基于深度学习主动视觉压力容器焊缝质量参数检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

0439 TH74

基金项目:

原国家质量监督检验检疫总局科技计划项目(2017QK105)、国家市场监督管理总局科技计划项目(2019MK143)资助


Active vision pressure vessel weld quality parameter detection method based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    压力容器 A、B 类对接焊缝是重要受力部位,其质量参数测量是焊接质量评估重要环节,本文研究基于深度学习主动视 觉压力容器焊缝质量参数检测方法。 提出多缺陷共存下焊缝参数计算方法,突破焊缝缺陷参数共存下存在焊缝质量参数难以 计算或无法计算问题;开展编码-解码图像特征点提取网络(EDE-net)结构设计,较好实现焊缝表面参数特征点一次性准确提 取;研究深度网络结构化通道剪枝方法,有效提高压力容器焊缝检测实时性能。 以不同尺寸压力容器焊缝为实验对象,结果表 明 Resnet50 骨干的 EDE-net 网络在模型整体压缩率 CR= 0. 5 下,单张图片提取时间由 0. 31 s 降低到 0. 19 s,减少 38. 7% ;第三 方检测机构给出测试报告,装置同时测量对接焊缝(A、B 类)焊缝 5 个参数耗时<0. 63 s,测量误差允许误差≤0. 08 mm。

    Abstract:

    Class A and B butt welds of pressure vessels are important stress-bearing parts, and the measurement of their quality parameters is an important part of welding quality evaluation. This article studies the detection method of weld quality parameters of pressure vessels based on deep learning active vision. A calculation method for weld parameters is proposed under the coexistence of multiple defects, which breaks through the problem that the weld quality parameters are difficult or impossible to calculate under the coexistence of weld defect parameters. We carry out the structural design of the encoding-decoding image feature point extraction network (EDE-net), which can better realize the one-time and accurate extraction of weld surface parameter feature points. We study the deep network structured channel pruning method to effectively improve the real-time performance of pressure vessel weld detection. Taking the welds of pressure vessels of different sizes as the experimental objects, the results show that the EDE-net network with the backbone of Resnet50 has CR= 0. 5 as the overall compression rate of the model, and the extraction time of a single image is reduced from the original 0. 31 s to 0. 19 s, a reduction of 38. 7% . The test report is given by the third-party testing agency, and the device simultaneously measures 5 parameters of the butt weld (Class A, B) weld, which takes less than 0. 63 s, and the allowable error of the measurement error is ≤0. 08 mm.

    参考文献
    相似文献
    引证文献
引用本文

刘桂雄,廖 普,杨宁祥.基于深度学习主动视觉压力容器焊缝质量参数检测方法[J].仪器仪表学报,2023,44(5):1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-17
  • 出版日期:
文章二维码