摘要:脑电信号被认为是检测驾驶员疲劳状态的最佳生理信号之一。 然而,由于不同被试者和不同记录时段的脑电信号差异 很大,设计一个无校准的脑电疲劳检测系统仍然具有挑战性。 近年来,虽然开发了许多深度学习方法来解决这个问题并取得了 重大进展,但是深度学习模型的黑盒效应使得模型决策不可信赖。 为此,本文提出了一种可解释深度学习模型,用于从单通道 脑电信号中检测跨被试疲劳状态。 该模型具有紧凑的网络结构,首先设计浅层 CNN 提取 EEG 特征,然后引入自适应特征重新 校准机制增强提取特征的质量,最后通过 LSTM 网络将时间特征序列与分类相关联。 模型分类决策的可解释信息则是由 LSTM 输出隐藏状态的可视化技术实现的。 在持续驾驶任务的公开脑电数据集上进行大量跨被试实验,该模型的分类平均准确率最 高达到 76. 26% 。 相比于先进的紧凑型深度学习模型,该模型有效降低了参数量和计算量。 可视化结果表明该模型已发现神经 生理学上可靠的解释。