基于深度学习的视觉同时定位与建图研究进展
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242.6 TH89

基金项目:

国家自然科学基金(61573183)项目资助


Research progress of visual simultaneous localization and mapping based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着机器视觉的不断发展,视觉传感器其小巧轻便、价格低廉等优势,使得视觉同时定位与建图(VSLAM)越来越受人们关注,深度学习为处理 VSLAM问题提供了新的方法与思路。本文综述了近年来基于深度学习的 VSLAM方法。首先回顾了VSLAM的发展历程、系统阐释了VSLAM的基本原理与组成结构。然后从视觉里程计(VO)、回环检测与建图3个方面分析各类基于深度学习的方法,从特征提取与特征匹配、深度估计与位姿估计及关键帧选择等3个部分阐述了深度学习在 VO中的应用;基于场景表达方式的不同,总结了几何建图、语义建图及广义建图中的深度学习方法。接着介绍了目前 VSLAM 常用的各种数据集以及性能评估指标。最后指出了目前VSLAM面临的难题与挑战,展望未来深度学习与VSLAM结合的研究趋势与发展方向。

    Abstract:

    With the continuous development of machine vision, visual sensors has advantages of lightweight and low cost. Thus, visual simultaneous localization and mapping(VSLAM)is attracting moreand more attention and becoming a research hotspot. Deep learning has provided new methods and ideas to deal with VSLAM problenns. This article reviews the deep learning-based VSLAM methods in recent years. Firstly, the development history of VSLAM is reviewed, and the basic principle and composition structure of VSLAM are systematically explained. Then, various methods based on deep learning are summarized and analyzed from three aspects, including visual odometry(VO),loop closure detection and mapping. The application of deep learning in visual odometry is described in three parts,which are feature extraction and feature matching,depth estimation and pose estimation and keyframes selection. Based on the different manner of scene representation, deep learning-based methods in geometric mapping, semantic mapping and general mapping are summarized. Thirdly, it introduces various datasets and performance evaluation metrics commonly used in VSLAM at present. Finally, the challenges of VSLAM are pointed out, and the future research trends and development directions of combining deep learning with VSLAM are forecasted.

    参考文献
    相似文献
    引证文献
引用本文

张 耀,吴一全,陈慧娴.基于深度学习的视觉同时定位与建图研究进展[J].仪器仪表学报,2023,44(7):214-241

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-01
  • 出版日期:
文章二维码