基于分层分块堆叠状态相关降噪自编码器的流程工业过程运行状态评价
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP13 TH17

基金项目:

国家重点研发计划(2021YFF0602404)、国家自然科学基金(62073060,61973057,61973304)、高层次人才项目(DZXX-045)资助


Plant-wide process operating performance assessment based on hierarchical multi-block stacked performance-relevant denoising auto-encoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对不同运行状态数据差异度小、数据易受强噪声干扰而且具有多工序的流程工业过程,提出了一种基于分层分 块堆叠状态相关降噪自编码器(HMSPDAE)的过程运行状态评价方法。 首先,根据工艺特性对全流程进行层次结构划分。 然 后,提出一种堆叠状态相关降噪自编码器模型,用于提取各个子工序及全流程过程数据中与运行状态密切相关的深层特征,进 而建立基于 HMSPDAE 的全流程评价模型。 所提方法可以有效降低模型复杂度、增强模型的可解释性。 最后,以湿法冶金过程 为背景进行仿真验证,结果表明 HMSPDAE 在两个不同实验中的评价准确率分别达到 99. 5% 和 99. 38% ,均优于其他方法,验证 了所提方法的有效性和优越性。

    Abstract:

    In this article, a hierarchical multi-block stacked performance-relevant denoising auto-encoder (HMSPDAE) is proposed to evaluate the process operating performance for plant-wide industrial processes with multiple sub-processes, low data difference among different operating performances, and strong noise interference. First, the whole process is divided into a hierarchical structure according to the process characteristics. Then, a method of stacked performance-relevant denoising auto-encoder is proposed to extract the performance-relevant deep features from the process data which are used to realize the operating performance assessment of each subprocess as well as the whole process. In further, a HMSPDAE-based whole-process evaluation model is formulated. The proposed method can effectively reduce the model complexity and enhance the interpretability of the model. Finally, simulation experiments are conducted in the wet metallurgical process. The results show that the assessment accuracy of HMSPDAE reaches 99. 5% and 99. 38% in two different experiments, which are both better than other methods.

    参考文献
    相似文献
    引证文献
引用本文

刘 炎,马 喆,褚 菲,王福利.基于分层分块堆叠状态相关降噪自编码器的流程工业过程运行状态评价[J].仪器仪表学报,2023,44(8):228-238

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-19
  • 出版日期:
文章二维码