机器人打磨系统力控补偿优化算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+. 2

基金项目:

安徽省智能破拆装备工程实验室开放基金(APELIDE2023A006)、安徽省重点研究与开发计划(2022f04020005)、河南省科技攻关(222102210254)项目资助


Research on force control compensation optimization algorithm for robotic grinding system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前打磨机器人在复杂环境中不能兼具磨削精度和顺应性等问题,提出了一种基于算法优化的机器人打磨系统力 控补偿方法。 首先,阐述了机器人打磨系统的力学特性及力控优化算法原理;然后搭建了实验系统,进行了机器人容许响应范 围及主动柔顺恒力磨削实验,最后,采用扩展 Kalman 滤波算法、最小二乘拟合算法和粒子滤波算法优化打磨力的实时补偿值, 并对比了各算法的补偿效果。 实验结果表明,通过力控补偿功能,在 20 mm 内可实现 100% 对系统结构误差的补偿;与设定期 望打磨力比较,平均相对误差为 5. 44% ;利用扩展 Kalman 滤波算法、最小二乘拟合算法和粒子滤波算法优化后平均误差分别降 低至 1. 20% 、1. 24% 和 1. 64% 。 拓展优化机器人协同力控系统的实时力/ 位补偿功能,将有助于提高机器人打磨系统的精度和 稳定性,为机器人技术的发展提供理论依据和技术支持。

    Abstract:

    A force control compensation method for robot polishing system based on algorithm is proposed in order to solve the problems that currently polishing robots cannot achieve both accuracy and compliance in complex environment. First of all, the mechanical characteristics of the robot polishing system and the principle of force control optimization algorithm are explained. Then the experimental system is established to perform the allowable response range and active soft and constant force polishing experiment. Finally, the Extended Kalman filter algorithm, least squares fitting algorithm and particle filter algorithm are used to optimize the real-time compensation value of the polishing force and the compensation effects of each algorithm are compared. The experimental results show that 100% compensation for system structure errors can be achieved within 20 mm through the force control compensation function. Compared with the setting expectation, the average relative error is 5. 44% . After optimization using Extended Kalman filter algorithm, least squares fitting algorithm and particle filter algorithm, the average error is reduced to 1. 20% , 1. 24% and 1. 64% respectively. Expanding and optimizing the real-time / bit compensation function of the robot collaborative control system will help improve the accuracy and stability of the robot′ s polishing system, which provide theoretical basis and technical support for the development of robot technology.

    参考文献
    相似文献
    引证文献
引用本文

严海堂,钱牧云,魏新园,张姣姣.机器人打磨系统力控补偿优化算法研究[J].仪器仪表学报,2024,45(4):272-281

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码