大型结构体裂缝检测中的定位方法
DOI:
CSTR:
作者:
作者单位:

1. 北京京仪仪器仪表研究总院有限公司北京100079;2.天津大学 精密测试技术及仪器国家重点实验室天津300072

作者简介:

通讯作者:

中图分类号:

TH39TP391

基金项目:

北京市东城区科技计划(20151007)项目资助


Novel positioning method for detecting large structure surface cracks
Author:
Affiliation:

1. Beijing Instrument Industry Research Institute, Beijing 100079, China;2. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高大型结构体表面裂缝检测的效率,提出了一种基于图像处理技术和坐标映射相结合的定位方法。该方法首先在序列图像中抽取清晰度最高的一帧,应用Retinex算法对光照引起的亮度不均进行补偿。然后将提取的标志点图像坐标映射到观测坐标系下,根据标志点的观测坐标和世界坐标计算两坐标系间的映射关系。再根据形态学图像处理中的凸壳、像素化、细化算法提取裂缝的图像坐标;如果观测新裂缝,则将裂缝图像坐标映射到世界坐标系下;如果观测历史裂缝,则将该条裂缝的世界坐标映射到当前观测坐标系下,并计算该条历史裂缝当前的观测角度,从而实现裂缝的空间定位。经实验证明,该方法高效、准确、便捷,16 s内可实现自动定位,且偏差不大于0.07°。

    Abstract:

    For detection of large structure surface cracks, a positioning method based on image processing technology and coordinate mapping is presented. First, the highest resolution frame is extracted from the sequence images, and the Retinex algorithm is used to compensate the uneven brightness. Second, the landmark image coordinates are mapped to observation coordinates. The mapping relationship between the world coordinate system and the observation coordinate system is calculated. Third, the morphological image processing algorithm is used, such as convex hull, pixels and thinning, to extract crack image coordinates. If there is a new crack, its observation coordinate is mapped to the world coordinate. If there is an old crack, its world coordinate is mapped to the observation coordinate. The observation angle in current observation system is calcualted. The result shows that this method is efficient, accurate and convenient, and the position error is less than 0.07°in 16 seconds.

    参考文献
    相似文献
    引证文献
引用本文

尚砚娜,石晶欣,赵岩,朱君尧,蔡友发.大型结构体裂缝检测中的定位方法[J].仪器仪表学报,2017,38(3):681-688

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-20
  • 出版日期:
文章二维码