一种新的工业过程振荡数据去噪技术
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院昆明650000; 2.云南大学云南省智能系统与计算重点实验室昆明650000; 3.东北林业大学计算机与控制学院哈尔滨150006

作者简介:

通讯作者:

中图分类号:

TH86TP274+.2

基金项目:

国家自然科学基金(62173168)、云南省基础研究计划(202301AT070277)项目资助


Novel method for oscillation data denoising in process industry
Author:
Affiliation:

1.School of Information Science & Engineering, Yunnan University, Kunming 650000, China; 2.Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming 650000, China; 3.School of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    振荡现象是工业过程控制回路性能恶化的重要表现,因此有效的振荡监控机制对于保证过程的安全稳定运行至关重要。然而,过程振荡数据中普遍存在随机噪声和外部扰动等因素,导致信噪比较低,严重影响振荡检测与诊断的准确性。为此,提出一种新的工业过程数据去噪技术,结合自适应噪声完备集合经验模态分解(CEEMDAN)、去趋势波动分析(DFA)与典型相关分析(CCA)。首先,利用CEEMDAN对信号进行分解,得到一系列固有模态函数(IMFs);接着,通过DFA将IMF分量划分为信息主导和噪声主导两类;然后,对噪声主导的IMF分量应用CCA以去除噪声;最后,将CCA输出的结果与信息主导的IMF分量叠加,得到去噪后的振荡信号。仿真和实际工业振荡数据的实验结果表明,与现有的去噪技术相比,方法在去噪后的信号相对均方根误差最低,相关性最高,展示出卓越的去噪精度和鲁棒性。

    Abstract:

    Oscillation is a significant indicator of performance degradation in industrial process control loops. Therefore, an effective oscillation monitoring mechanism is essential for ensuring the safe and stable operation of these processes. However, random noise and external disturbances are prevalent in process oscillation data, leading to a low signal-to-noise ratio (SNR), which severely affects the accuracy of oscillation detection and diagnosis. To address this, this paper proposes a novel denoising technique for industrial process data, combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), detrended fluctuation analysis (DFA), and canonical correlation analysis (CCA). First, CEEMDAN is used to decompose the signal into a series of intrinsic mode functions (IMFs). Next, DFA is employed to classify the IMF components into information-dominated and noise-dominated categories. Then, CCA is applied to the noise-dominated IMF components to remove noise. Finally, the outputs of CCA are combined with the informationdominated IMF components to reconstruct the denoised oscillation signal. Simulation and experimental results using actual industrial oscillation data show that, compared to existing denoising techniques, this method achieves the lowest root mean squared relative error (RMSE) and the highest correlation in the denoised signals, demonstrating excellent denoising accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文

郎煜民,郎恂,吴建德,刘燕,李鹏.一种新的工业过程振荡数据去噪技术[J].仪器仪表学报,2024,45(12):307-318

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-04
  • 出版日期:
文章二维码