基于 VMD-NARX 的 MOSFET 剩余使用寿命预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165

基金项目:

国家科技部国家重点研发计划(2018YFB1305501)项目资助


Method for predicting the remaining useful life of MOSFETs based on VMD-NARX
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    金属氧化物半导体场效应晶体管(MOSFET)剩余使用寿命预测能够防止因器件长时间导通出现性能逐渐退化或失效, 但传统预测模型易忽略 MOSFET 退化参数的非线性细节特征而导致预测精度较差。 本文提出一种基于变分模态分解与带外源 输入的非线性自回归神经网络的 MOSFET 剩余使用寿命预测方法。 首先采用变分模态分解将退化参数序列分解为多组含有非 线性变化信息的特征分量。 然后分别利用贝叶斯正则和 Levenberg-Marquardt 算法对预测网络进行优化。 最终集成多组预测分 量值获得 MOSFET 剩余使用寿命预测结果。 实验结果表明,本文所提方法的均方根误差小于 0. 003,平均绝对百分比误差小于 5% ,均优于对比方法,剩余使用寿命预测平均偏差小于 5 min,验证了该方法的有效性.

    Abstract:

    Remaining useful life prediction of metal oxide semiconductor field effect transistor ( MOSFET ) can prevent gradual degradation or lose efficacy of devices due to long-term conduction. However, the traditional prediction models are difficult to extract the detailed characteristics of nonlinear changes in MOSFETs degradation parameters, resulting in poor prediction accuracy. To address this issue, a remaining useful life prediction method for MOSFETs is proposed, which is based on variational mode decomposition and nonlinear auto-regressive model with exogenous inputs (NARX) neural networks with external inputs. Firstly, the degenerate parameter sequence is decomposed into multiple sets of characteristic components containing nonlinear change information using the VMD method. Secondly, the NARX prediction model is optimized by using Bayesian regularization and Levenberg-Marquardt algorithms, respectively. Finally, integrating multiple sets of feature component prediction values to obtain the remaining life prediction results of MOSFETs. The experimental results show that the root mean square error of the proposed method is less than 0. 003, the mean absolute percentage error is less than 5% , all of which are better than the comparison method. The average error of remaining useful life prediction is less than 5 min, which evaluates the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文

石 欣,张夏恒,朱雅亲,梁 飞,石浩天.基于 VMD-NARX 的 MOSFET 剩余使用寿命预测方法[J].仪器仪表学报,2023,44(9):275-286

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-24
  • 出版日期:
文章二维码