基于 LGF-Net 的全天候轨道入侵异物智能检测系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491. 2 TH39

基金项目:

天津市交通运输科技发展计划项目 ( 2022-09)、北京市自然科学基金 ( L221018)、光纤传感与系统北京实验室开放课题(GXKF2022001)、天津大学自主创新基金 (2023XHX-0019)项目资助


All-weather intelligent detection system for railway intrusion obstacles based on LGF-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轨道入侵异物为行车安全带来巨大威胁,而现有的轨道目标检测模型检测精度和速度难以平衡、复杂轨道环境中 多尺度目标检测鲁棒性差等问题,提出了一种全天候高精度实时多尺度轨道入侵异物检测模型。 该模型通过使用双分支结构 和线性特征变换提升模型的特征提取速度;通过改进 Transformer 结构使轻量型模型能够建模全局上下文信息;通过设计高丰 富度特征融合结构和轻量型注意力机制进一步提升模型的多尺度目标检测能力。 此外,本文将该模型进行嵌入式移植并研制 智能检测系统。 实验结果表明,本文所提出的模型在实际轨道场景采集的数据集中检测精度和速度分别为 94. 93% 和 132 fps, 比 YOLOv5s 高 3. 09% ,能够满足在复杂轨道场景中高精度实时检测多尺度入侵异物的应用需求。

    Abstract:

    Aiming at the enormous threat that railway intrusion obstacles pose to train operation safety, and the existing railway obstacle detection models have difficulty balancing detection accuracy and speed and poor multi-scale object detection robustness in complex railway environments, this article proposes an all-weather high-precision real-time multi-scale railway obstacle detection model. The model improves the feature extraction speed of the model by using dual-branch structure and linear operation. By modifying the Transformer structure, the lightweight model can model global contextual information. By designing high richness feature fusion structure and lightweight attention mechanism, the model′s multi-scale object detection ability is further improved. In addition, we embed the model and develop an intelligent detection system. The experimental results show that the proposed model has a detection accuracy and speed of 94. 93% and 132 fps in the dataset collected from actual railway scenes, respectively, which is 3. 09% higher than YOLOv5s. It can meet the application requirements of high-precision real-time detection of multi-scale obstacles in complex railway scenes.

    参考文献
    相似文献
    引证文献
引用本文

赵宗扬,康杰虎,梁 健,叶 涛,吴 斌.基于 LGF-Net 的全天候轨道入侵异物智能检测系统[J].仪器仪表学报,2023,44(9):287-301

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-24
  • 出版日期:
文章二维码