摘要:随着新能源产业的迅速发展,大量动力电池面临退役回收后如何处理的问题。 退役电池的二次利用场景需要根据健 康状态( SOH)确定,然而不同退役电池的荷电状态不同,这使得快速估计 SOH 十分困难。 为此,提出了一种基于荷电状态差 异的退役电池的 SOH 快速获取策略。 在本策略中,不同 SOH 退役电池的荷电状态差异被用于产生多种健康特征。 同时,为 了选取随机森林算法合适的超参数,遗传优化随机森林回归算法被提出应用于 SOH 的估计。 通过验证,本文策略大幅降低 了退役电池 SOH 的估计时间。 并且通过多种避免测量时接触电阻和导线电阻策略,使得 10 节退役电池的健康状态估计误 差低于 3% 。