基于并联多尺度卷积神经网络的微动脉瘤检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41 TH786

基金项目:


Microaneurysm detection method based on parallel multi-scale convolution neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于视网膜图像中微动脉瘤尺寸小、背景干扰多,导致传统方法检测时准确率低,现阶段的深度学习模型大多针对大尺 寸目标进行检测,存在结构复杂、对小目标的检测效果不佳的问题。 为解决以上问题,提出了一种基于并联多尺度卷积神经网 络的微动脉瘤检测方法。 首先,建立微动脉瘤尺寸与检测用理论感受野之间的对应关系;然后,根据微动脉瘤的类型和尺寸范 围构建包含两个感受野尺度的并行卷积网络;最后,提出了一种基于主动学习的训练集构建与数据增广方式,以提高模型的检 测性能。 方法在两个公开数据集和 1 个自采眼底数据集中进行了对比实验,实验结果表明,该方法能有效实现微动脉瘤的检 测,相比于同类方法对于小尺寸和与血管粘连的微动脉瘤具有更好的检测效果。

    Abstract:

    Due to the small size and high background interference of microaneurysms in retinal images, traditional methods have low detection accuracy. Currently, deep learning models mostly focus on detecting large-sized targets, which have complex structures and poor detection performance for small targets. To address these issues, a micro aneurysm detection method based on parallel multi-scale convolutional neural networks is proposed. Firstly, a corresponding relationship between the size of microaneurysms and the theoretical receptive field used for detection is established. Then, a parallel convolutional network consisted of two receptive field scales is constructed, which is based on the type and size range of microaneurysms. Finally, a training set construction and data augmentation method based on active learning is proposed to improve the detection performance of the model. The method is compared on two public datasets and one self-collected fundus dataset. The experimental results show that the method can effectively detect microaneurysms, and has better detection performance compared to similar methods for small and vascular adherent microaneurysms.

    参考文献
    相似文献
    引证文献
引用本文

苑玮琦,王 安.基于并联多尺度卷积神经网络的微动脉瘤检测方法[J].仪器仪表学报,2023,44(11):224-233

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-29
  • 出版日期:
文章二维码