基于级联优化和强度特征的地下退化环境机器人自主精准定位
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH86 TP29 TD178

基金项目:

江苏省自然科学基金青年基金(BK20230688)、江苏省杰出青年基金(BK20211531)、江苏省高等学校基础科学(自然科学)研究项目(22KJB440004)、徐州市重点研发计划项目(KC22404)、江苏师范大学博士学位教师科研支持项目(22XFRS011)资助


Autonomous and accurate robot positioning in degraded underground environment based on cascade optimization and intensity feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着国家深地能源战略和地下基础工程的部署展开,自主移动机器人在地下矿山、工程隧道和地下管道等领域的需求 快速增长。 地下自主作业机器人所处环境复杂,普遍面临卫星定位信号拒止和场景退化特征,导致机器人位姿状态估计误差漂 移严重、环境地图构建扭曲变形。 针对地下退化环境机器人状态估计不完备的问题,提出一种精准、鲁棒的激光雷达-惯性同 时定位与建图(SLAM)框架和方法,组合惯性里程计和激光雷达-惯性里程计级联优化过程,并在激光雷达点云特征匹配中引 入强度特征降低点云几何特征稀疏引起的匹配误差,并通过退化检测引入正确的约束方向,保证位姿估计信息的鲁棒性和准确 性。 公开数据集和现场巷道实验结果表明,所提方法在精度、鲁棒性方面均有出色表现,在地下巷道退化环境的定位精度可达 0. 03 m,可为地下退化环境机器人提供可靠的状态估计和环境描述。

    Abstract:

    With the deployment of the national deep-earth energy strategy and underground infrastructure projects in China, the demand for autonomous mobile robots in underground mines, engineering, and pipelines is growing rapidly. Underground autonomous robots have to bear troubles like satellite positioning signal denial and scene degradation which easily lead to serious error drift in robot pose estimation and distortion in environmental map construction. To address the problem of incomplete state estimation of underground degraded environment robots, an accurate and robust LiDAR-inertial SLAM framework and method is proposed. It combines the inertial odometer and the LiDAR-inertial odometer by the cascade optimization process. In addition, the intensity feature is introduced into LiDAR point cloud feature matching to reduce the matching error caused by sparse point cloud geometric features, and correct constraint direction is introduced through degradation detection to ensure the robustness and accuracy of pose estimation. The experimental results on public datasets and field tunnels show that the proposed method has excellent performance both in accuracy and robustness. The positioning accuracy in the degraded roadway reaches 0. 03 m, which can provide reliable state estimation and environment description for robots in underground degraded environments.

    参考文献
    相似文献
    引证文献
引用本文

崔玉明,刘送永,吕振礼,李洪盛,王崧全.基于级联优化和强度特征的地下退化环境机器人自主精准定位[J].仪器仪表学报,2023,44(12):208-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-27
  • 出版日期:
文章二维码