基于形变卷积和深层聚合网络的水下文物检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH701

基金项目:

中国科学院对外合作重点项目( 173321KYSB20200002)、国家自然科学基金( 62273332)、中国科学院青年创新促进会会员(2022201)、广东省基础与应用基础研究基金(2023A1515011363)项目资助


Underwater cultural artifact detection based on deformable convolution and deep layer aggregation network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    搭载有视觉检测系统的自主水下航行器(AUV)具有水下文物探测功能,对深海考古有着重要意义。 水下文物所处环境复 杂多变,目标存在破损、堆叠和泥沙掩埋等情况,导致判别特征提取困难,使得 AUV 视觉检测系统无法可靠、准确地实现水下文物 的检测。 针对上述问题,提出一种基于可形变深层聚合网络模型的水下文物检测算法。 为了充分提取复杂环境下水下文物目标 特征信息,设计了具有可形变卷积层的多尺度深层聚合网络。 在此基础上,引入 SimAM 注意力模型进行特征优化,来增强文物目 标潜在特征信息并削弱背景干扰。 最后,通过不同尺度的特征融合实现水下文物检测。 在采集的水下文物数据集上进行大量验 证和分析,算法的精确率、召回率和平均精度均值(mAP)分别达到了 92. 7% 、90. 5% 和 92. 2% 。 此外,算法已部署到 AUV 系统中。 在实际深海测试场景中,视觉检测系统的文物检测帧率达到 19 fps,可满足实时检测的任务需求。

    Abstract:

    Autonomous underwater vehicles (AUVs) equipped with visual detection systems are capable to detect underwater artifacts, which is of great significance to deep-sea archaeology. Underwater cultural artifacts are situated within a dynamic and intricate environment, where the target objects are often fragmented, layered and concealed under sediment. These conditions pose significant challenges to the effective extraction of discernible features, thereby impeding the capability of AUV for reliable and accurate detection of underwater artifacts. In order to solve these problems, this paper proposes an underwater cultural artifact detection algorithm based on the deformable deep aggregation network model. To fully extract the target feature information of underwater cultural artifact in complex environments, this paper designs a multi-scale deep aggregation network with deformable convolutional layers. Besides, the SimAM attention module is designed for the feature optimization, which enhances the potential feature information of cultural artifact target and weakens the background interference information simultaneously. Finally, the prediction of cultural artifact is achieved through fusing feature at different scales. The proposed algorithm has been extensively validated and analyzed on the collected underwater artifact datasets, and the precision, recall, and mAP of algorithm are 92. 7% , 90. 5% , and 92. 2% , respectively. Additionally, the proposed algorithm has been deployed to the AUV system, specifically the artifact detection frame rate of visual detection system reaches 19 fps in the actual deep-sea test scenario and this can satisfy the real-time detection task.

    参考文献
    相似文献
    引证文献
引用本文

周道先,张吟龙,徐高飞,杨雨沱,梁 炜.基于形变卷积和深层聚合网络的水下文物检测[J].仪器仪表学报,2023,44(11):185-195

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-29
  • 出版日期:
文章二维码