基于能量熵 VMD 最优分解与 GRU 循环神经网络的潮汐预测精度提升方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P714+. 1 TH766

基金项目:

国家重点研发计划(2022YFC3104200)项目资助


Tide prediction accuracy improvement method research based on VMD optimal decomposition of energy entropy and GRU recurrent neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步提升潮汐预测精度,提高预测模型的多适应性,针对低频潮汐分潮智能化自适应提取困难、动态化处理分潮信 息能力弱、单一预测模型对潮汐整体预测的局限性等问题,提出了一种基于能量熵的自适应最优变分模态分解 VMD 与门控循 环单元神经网络 GRU 相结合的潮汐预测提升方法。 首先,将潮汐数据归一化预处理,通过 VMD 对潮汐数据完成自适应变分模 态分解,并根据不同分解层模态分量的能量熵判定最优分解层数,最后将最优分量标准化后经 GRU 单独预测合成,通过反归一 化形成最终预测数据。 经验证分析,在潮汐预测方面,GRU 模型比 LSTM、BiLSTM 模型性能更优,均方根误差分别提升了 53% 和 96. 8% ,而本文方法与单一 GRU 模型相比,均方根误差再次提升了 81. 3% ,预测精度提升效果更加明显,对于潮汐分析与预 测具有较高的推广应用价值。

    Abstract:

    To improve the accuracy of tidal prediction further enhance the adaptability of the prediction model, and address a series of problems, including the difficulties of intelligent and adaptive extraction of low-frequency tidal components, weak ability to dynamically process tidal information, limitations of a single prediction model for overall tidal prediction, this paper proposes an improving tidal prediction model based on adaptive optimal variational modal decomposition of energy entropy and GRU recurrent neural networks. Firstly, the tidal data are normalized, and the VMD method is utilized for adaptive variational modal decomposition. Then, the optimal decomposition level is confirmed based on the energy entropy of the components. Finally, each component of the optimal decomposition is standardized and separately predicted and synthesized by GRU. The final prediction data are formed through reverse normalization. Through verification and analysis, compared with LSTM and BiLSTM models, the GRU model has better performance in terms of tidal prediction. The RMSE values are increased by 53% and 96. 8% , respectively. However, compared with a single GRU model, the proposed prediction model has RMSE increase 81. 3% again, and the accuracy improvement effect is more obvious. The method in this paper has high promotion and application value for tidal analysis and prediction.

    参考文献
    相似文献
    引证文献
引用本文

赵 杰,解则晓,刘世萱.基于能量熵 VMD 最优分解与 GRU 循环神经网络的潮汐预测精度提升方法研究[J].仪器仪表学报,2023,44(12):79-87

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-27
  • 出版日期:
文章二维码