基于模糊残差收缩网络与人机协同的机械装备健康评估方法
DOI:
CSTR:
作者:
作者单位:

1.华中科技大学船舶与海洋工程学院武汉430074; 2.工业和信息化部电子第五研究所广州511370; 3.华中科技大学机械科学与工程学院武汉430074; 4.国家智能设计与数控技术创新中心武汉430074

作者简介:

通讯作者:

中图分类号:

TH17 TN911

基金项目:

国家自然科学基金(52075202,523B2100)、华中科技大学交叉研究支持计划(2024JCYJ028)项目资助


Health assessment of mechanical equipment based on fuzzy residual shrinkage network and human-machine collaboration
Author:
Affiliation:

1.School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2.China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China; 3.School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 4.National Center of Technology Innovation for Intelligent Design and Numerical Control, Wuhan 430074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为全面评估机械装备健康状态并制定分级运维决策策略,提出了一种机械装备人机协同健康评估方法。首先,从振动、压力、扭矩等监测数据中分别提取机械装备症状参数;接着,设计一种新的模糊残差收缩网络,确定机械装备状态隶属度函数,建立基于症状参数的单一评估模型。然后,将各单一评估模型输出的状态隶属度转化为集体犹豫模糊健康评估矩阵;采用best worst method计算各模型的评估优先级,利用语义Z数环境下的TOPSIS方法,发现不同运行状态对装备行为的影响差异。最后,通过犹豫模糊加权平均算子,定义机械装备健康指标,并引入多功能k-means聚类算法判定装备健康等级,以指导装备分级运维决策。验证结果表明:所提出的方法在场景适用性和性能稳定性方面有着尚佳的表现。

    Abstract:

    A humanmachine cooperative health assessment method is proposed for mechanical equipment to evaluate its health condition and support hierarchical maintenance decisions. First, symptom parameters are extracted from collected vibration, pressure, and torque signals. A novel fuzzy residual shrinkage network is then developed to establish the status membership function of the mechanical equipment, forming the individual assessment model based on the extracted parameters. Next, the status memberships from each model are integrated into a collective hesitation fuzzy health assessment matrix. The Best-Worst Method is applied to calculate the priority of each assessment model, while TOPSIS with linguistic Z-numbers is employed to analyse the impact of different operational states on the equipment′s behaviour. Finally, a hesitation fuzzy weighted average operator is used to define the health index of the mechanical equipment, and health levels are identified using the versatile k-means clustering method to support hierarchical maintenance decisions. Validation results demonstrate that the proposed method excels in adaptability to different conditions and stability in performance.

    参考文献
    相似文献
    引证文献
引用本文

江伟雄,王吉,吴军,朱海平,李新宇.基于模糊残差收缩网络与人机协同的机械装备健康评估方法[J].仪器仪表学报,2024,45(11):252-265

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码