基于改进粒子群算法的三坐标测量机最佳测量区域评价方法
DOI:
CSTR:
作者:
作者单位:

北京工业大学材料与制造学部北京市精密测控技术与仪器工程技术研究中心北京100124

作者简介:

通讯作者:

中图分类号:

TH711

基金项目:

国家自然科学基金(52175491)项目资助


An evaluation method for optimal measurement region of coordinate measuring machines based on improved particle swarm optimization algorithm
Author:
Affiliation:

Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高三坐标测量机面向被测对象的测量精度,提出一种改进粒子群算法以辨识三坐标测量机最佳测量区域。首先分析三坐标测量机测量空间内的体积误差分布规律,利用最小二乘法拟合单项几何误差模型,并建立三坐标测量机空间点误差寻优模型。所提出的改进粒子群算法结合了自适应权重、自适应干扰力和模拟退火算法,性能优于传统粒子群算法和自适应粒子群算法。对比实验显示,改进粒子群算法在最优值、最差值、均值和标准差4个方面均优于粒子群算法和自适应粒子群算法,单次寻优速度分别提高了45.1%和29.2%。实验结果表明,在规划优化空间大小为30 mm×30 mm×30 mm时,基于改进粒子群算法辨识的三坐标测量机最佳测量区域为206 mm≤X≤236 mm,350 mm≤Y≤380 mm,-262 mm≤Z≤-232 mm。基于直径为15.874 7 mm、球度为50 nm的高精度标准球的对比实验表明,当标准球放置在三坐标测量机最佳测量区域时,标准球直径测量偏差最小为1.7 μm,验证了提出方法的正确性。该方法具有普适性,可用于其他被测对象的三坐标测量机最佳测量区域确定。

    Abstract:

    An Improved Particle Swarm OptimizationSimulated Annealing Algorithm (IPSO-SAA) is proposed to enhance the measurement accuracy of the Coordinate Measuring Machine (CMM) for the measured object by identifying the optimal measurement area. Firstly, the distribution pattern of volumetric errors within the CMM measurement space is analyzed. Individual geometric error models are fitted using the least squares method, and an optimization model for the point errors in the CMM space is established. The proposed IPSOSAA method, which combines adaptive weighting, adaptive disturbance force and simulated annealing algorithm, performs better than conventional Particle Swarm Optimization (PSO) and Adaptive Particle Swarm Optimization (APSO) algorithms. Comparative experiments show that IPSO-SAA is superior to PSO and APSO algorithms in terms of the best, worst, mean, and standard deviation values, and the single optimization speed is increased by 45.1% and 29.2% respectively. The results obtained from the IPSO-SAA algorithm identification indicate that, based on the size of the planning optimization space being 30 mm×30 mm×30 mm, the optimal measurement area in the CMM identified by the IPSO-SAA algorithm is 206 mm≤X≤236 mm, 350 mm≤Y≤380 mm, -262 mm≤Z≤-232 mm. Comparative experiments with a high-precision standard ball, with a diameter of 15.8747mm and a sphericity of 50nm, demonstrate that when placed within the optimal measurement area in the CMM, the minimum diameter measurement error of the standard ball is 1.7μm, validating the correctness of the proposed method. The method presented in this study is universal and can be used to determine the optimal measurement area of CMM for other measured objects.

    参考文献
    相似文献
    引证文献
引用本文

陈洪芳,吴欢,王子帅,马英伦,石照耀.基于改进粒子群算法的三坐标测量机最佳测量区域评价方法[J].仪器仪表学报,2024,45(11):197-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码