一种基于DP-KMP的机器人避障交互式学习方法
DOI:
CSTR:
作者:
作者单位:

福州大学机械工程及自动化学院福州350108

作者简介:

通讯作者:

中图分类号:

TH89TP242

基金项目:

国家重点研发计划(2018YFB1308603)项目资助


Interactive learning approach for robot obstacle avoidance based on DP-KMP
Author:
Affiliation:

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使机器人在执行复杂任务时能够及时避开障碍,提出了一种基于DP-KMP的机器人避障交互式学习方法。首先构建了该方法的整体框架,采用分割泛化策略,实现对示教轨迹的快速分段学习和对分段轨迹的避障规划;针对学习阶段,提出了基于DP算法的轨迹分割策略以提高分割效率,并使用高斯混合模型策略提取各子轨迹的参考数据库;针对轨迹规划阶段,使用KMP模型完成轨迹复现与泛化,并引入基于人机交互反馈的参考数据库更新策略,提升了人机交互避障的成功率;针对该更新策略可能失效导致避障轨迹规划失败的问题,提出了两个相应的适用条件用于检验分割生成的子轨迹。最后,通过仿真验证了所述适用条件的有效性;真实实验结果表明,使用所提出的方法分割两个实验的示教轨迹分别仅用时0.084和0.107 s,KUKA协作机器人在执行不同搬运任务的过程中通过与用户的多次交互成功避开了所有静止和突然变化的障碍。

    Abstract:

    To make the robot avoid obstacles in time while performing complex tasks, an interactive learning approach for robot obstacle avoidance based on DP-KMP is proposed. Firstly, the whole framework of this approach is constructed, which adopts the segmentation-generalization strategy, to implement the learning of demonstrated trajectories with rapid segmentation and the planning of sub-trajectories for obstacle avoidance. In the learning phase, a trajectory segmentation strategy based on the DP algorithm is proposed to improve the efficiency of segmentation, and Gaussian mixture model strategy is used to extract the reference database from each sub-trajectory. In the trajectory planning phase, the KMP model is used to implement the trajectory reproduction and generalization, while the reference database update strategy based on humanrobot interaction feedback is introduced, to enhance the success rate of human-robot interaction for obstacle avoidance. Aiming at the issue that this update strategy may be ineffective to cause failure in planning the trajectory for obstacle avoidance, two available conditions are proposed for inspecting the sub-trajectories generated by segmentation. Finally, the effectiveness of mentioned available conditions is verified by simulation, respectively. The real experimental results show that it takes only 0.084 s and 0.107 s, respectively, to segment the demonstrated trajectories of the two experiments using the proposed approach, and KUKA cobot successfully avoids all static and suddenly changing obstacles through multiple interactions with user during the execution of the different lift-place tasks.

    参考文献
    相似文献
    引证文献
引用本文

肖洒,吕勇明,吴海彬.一种基于DP-KMP的机器人避障交互式学习方法[J].仪器仪表学报,2024,45(11):65-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码