基于层次化多尺度特征融合的金属缺陷分类模型
DOI:
CSTR:
作者:
作者单位:

沈阳工业大学机械工程学院沈阳110870

作者简介:

通讯作者:

中图分类号:

TH164

基金项目:

辽宁省教育厅面上项目(LJ212410142026)资助


Enhanced hierarchical multi-scale feature fusion model for metal defect classification
Author:
Affiliation:

School of Mechanical Engineering, Shenyang University of Technology, Shenyang 100870, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    金属缺陷检测作为工业质量控制的关键环节,其检测精度直接影响制造业智能化进程。针对现有特征融合模块存在特征信息丢失、跨尺度信息交互不足以及识别准确率低等问题,提出一种基于层次化多尺度特征融合的分类模型。该模型通过融合Swin Transformer与ConvNeXt两种网络架构的互补优势,构建了具有层次化感知能力的特征学习网络。其中,Swin Transformer采用移位窗口机制和多级自注意力机制有效捕获全局特征,ConvNeXt通过深度可分离卷积和高效卷积操作精准提取局部特征。为实现全局与局部的高效融合,创新性地设计自适应层次特征融合层,该层采用通道注意力机制、空间注意力机制和多尺度融合策略,实现全局与局部特征在多层次上的有效融合,同时在该层中增加多层倒残差融合模块,通过动态调整提取特征信息,以确保特征融合的精准性与可靠性。为验证模型的有效性,在公开NEU-DET和GC10-DET数据集上进行实验,准确率分别达到99.6%和96.9%。为验证模型的泛化性,在自建数据集上进行实验,准确率达到99.8%,与目前主流算法ConvNeXt、Swin transformer、VGG16、ResNet34模型相比,准确率分别提升3.4%、2.3%、4.3%、2.7%。实验结果表明,HMFF模型在金属缺陷检测领域具有更显著的分类准确性和鲁棒性,为工业场景下的高精度缺陷检测提供了新的研究方法。

    Abstract:

    Metal defect detection, as a critical component of industrial quality control, directly determines the advancement of intelligent manufacturing. To address existing issues in feature fusion modules including feature information loss, insufficient cross-scale interaction, and low recognition accuracy, a hierarchical multi-scale feature fusion-based classification model is proposed. By integrating complementary advantages of Swin Transformer and ConvNeXt architectures, a hierarchical perception-enabled feature learning network is constructed. Specifically, the Swin Transformer employs shifted window mechanisms and multi-stage self-attention to effectively capture global features, while ConvNeXt utilizes depth separable convolution and efficient convolutional operations for precise local feature extraction. To achieve efficient global-local fusion, an innovative adaptive hierarchical feature fusion layer is designed, incorporating channel attention mechanisms, spatial attention mechanisms, and multi-scale fusion strategies to enable effective multi-level feature integration. Additionally, a multi-layer inverted residual fusion module is incorporated to dynamically adjust feature extraction, ensuring precise and reliable feature fusion. Experimental validation on public NEU-DET and GC10-DET datasets demonstrates superior performance with accuracy rates of 99.6% and 96.9%, respectively. To verify generalization capability, evaluations on a self-constructed dataset achieve an accuracy of 99.8%, outperforming mainstream models including ConvNeXt, Swin Transformer, VGG16, and ResNet34 by 3.4%, 2.3%, 4.3%, and 2.7% respectively. The results confirm that the HMFF model exhibits enhanced classification accuracy and robustness in metal defect detection, providing a novel methodological framework for high-precision industrial defect inspection.

    参考文献
    相似文献
    引证文献
引用本文

李季桐,刘杰,杨娜,王子宁.基于层次化多尺度特征融合的金属缺陷分类模型[J].仪器仪表学报,2025,46(3):206-218

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码