基于RIME-BP神经网络的磨齿机进给系统热误差预测
DOI:
CSTR:
作者:
作者单位:

1.中南林业科技大学机械与智能制造学院长沙410004; 2.合肥工业大学机械工程学院合肥230009

作者简介:

通讯作者:

中图分类号:

TH161

基金项目:

国家自然科学基金企业创新发展联合基金项目(U22B2084)、湖南省重点研发计划项目(2023GK2053)、湖南省自然科学基金项目(2024JJ5643)资助


Thermal error prediction of gear grinding machine feed system based on RIME-BP neural network
Author:
Affiliation:

1.College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology, Changsha 410004, China; 2.School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了减少热致误差对数控机床进给系统定位精度的影响,提高被加工产品的一致性,提出一种基于霜冰算法(RIME)优化后的BP神经网络热误差预测模型。在不同工况下,布置温度传感器和激光干涉仪以采集温度和丝杆热误差数据。结合模糊C均值聚类和灰色关联度算法对温度样本进行特征选择,筛选出关键温度特征点。以温度和丝杆位置坐标作为输入,丝杆热误差作为输出,构建RIME-BP热误差预测模型。针对H650GA型磨齿机,利用K折交叉验证法对该模型预测精度进行实例验证,并与GA-BP、BP和SVM模型进行对比。结果表明,该模型的平均决定系数R2高达0.995,相对于GA-BP、BP和SVM模型,分别提高了3.54%、9.58%和17.75%。所提出方法为热误差补偿提供了理论和技术指导,具有工程应用价值。

    Abstract:

    To mitigate the impact of thermal errors on the positioning accuracy of the CNC machine tool feed system and improve the consistency of processed products, a thermal error prediction model based on the RIME-optimized BP neural network is introduced. Temperature sensors and a laser interferometer are arranged under various operating conditions to collect temperature and lead screw thermal error data. Fuzzy C-means clustering and grey relational analysis are applied for feature selection from temperature samples, identifying key temperature feature points. The RIME-BP thermal error prediction model is constructed using temperature and screw position coordinates as inputs and screw thermal error as the output. For the H650GA gear grinding machine, the K-fold cross-validation method is used to validate the model′s prediction accuracy, and compared with GA-BP, BP, and SVM models. The results show that the proposed model′s average coefficient of determination (R2) of 0.995, which is 3.54%, 9.58%, and 17.75% higher than the GA-BP, BP, and SVM models, respectively. The proposed method provides theoretical and technical guidance for thermal error compensation and holds significant engineering application potential.

    参考文献
    相似文献
    引证文献
引用本文

肖捷,王志永,于水琴,张宇,薛芮.基于RIME-BP神经网络的磨齿机进给系统热误差预测[J].仪器仪表学报,2024,45(11):277-286

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码