提高谐波残差阶次的圆光栅自标定方法
DOI:
CSTR:
作者:
作者单位:

天津大学精密仪器与光电子工程学院天津300072

作者简介:

通讯作者:

中图分类号:

TH741.23

基金项目:


Self-calibration method of circular grating to increase the order of harmonic residuals
Author:
Affiliation:

School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    圆光栅是实现超高精度全圆周角度测量的重要工具,在微纳加工、瞄准定位和计量科学等领域起着重要作用。圆光栅自标定技术通过布置读数头,并采用特定的数据处理方法分离系统误差,克服了测量量程小和缺乏更高参考基准的问题,从而实现自标定。为了提高圆光栅角度测量精度,降低圆光栅自标定中谐波抑制的影响,故提出一种含素数夹角的多读数头自标定方法,以提高谐波残差阶次。基于传递函数法的自标定原理,研究了残差阶次与读数头夹角的定量关系,建立了残差阶次为360整数倍的多读数头布局夹角计算公式。利用该公式计算得到六读数头布局夹角,计算结果表明:对于360点采样的数据,对比实验的布局1残差为0.8″,残差阶次是6的整数倍;布局2残差为0.2″,残差阶次是40的整数倍;该方法得到的本文布局残差为3×10-13″,残差阶次为360的整数倍。通过搭建六读数头自标定实验,使用本文方法消除94.37%的圆光栅测角系统的误差,实现了圆光栅测角系统的全圆周标定,且重复性良好,验证了在实际应用中的有效性。本标定方法极大提高了圆光栅自标定中谐波残差的阶次,对减小测角谐波误差有一定的参考价值,为超高精度角位移传感器的实现提供支撑。

    Abstract:

    Circular grating is an important tool to achieve ultra-high precision full circle Angle measurement, which plays an important role in micro and nano machining, aiming and positioning, metrology science and other fields. The circular grating self-calibration technique overcomes the problems of small measuring range and lack of higher reference datums by arranging reading heads and using specific data processing methods to separate systematic errors, thereby enabling self-calibration. To improve the Angle measurement accuracy of circular gratings and reduce the harmonic suppression in circular grating self-calibration, a multi-reading-head self-calibration method is proposed to increase the harmonic residual order. Based on the transfer function method, the relationship between the residual order and the Angle of the reading head is studied, and the formula for calculating the Angle of the multi-reading head with the residual order of 360 integers is established. The calculation results show that for the data sampled from 360 points, the residual of layout 1 in the comparison experiment is 0.8″, and the residual order is an integer multiple of 6. Layout 2 has a residual of 0.2″, and the residual order is an integer multiple of 40. The proposed layout 3 obtained by this method has a residual of 3×10-13″, and the residual order is an integer multiple of 360. By conducting a self-calibration experiment with six reading heads, the proposed method eliminates 94.37% of the errors in the circular grating angle measurement system, achieving full-circle calibration with excellent repeatability. This demonstrates the method′s effectiveness in practical applications. This calibration method significantly enhances the order of harmonic residual in the self-calibration of circular gratings, which offers valuable reference for mitigating harmonic errors in angular measurements and supports the development of ultra-high precision angular displacement sensors.

    参考文献
    相似文献
    引证文献
引用本文

池烽,纪鹏宇,姜博文,黄银国.提高谐波残差阶次的圆光栅自标定方法[J].仪器仪表学报,2025,46(7):214-224

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码