基于周期峰值电流的磁轴承转子位移自传感解调方法研究
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学广西高校先进制造与自动化技术重点实验室桂林541006; 2.桂林航天工业学院桂林541004; 3.桂林理工大学机械与控制工程学院桂林541006

作者简介:

通讯作者:

中图分类号:

TH711TP212. 1

基金项目:


Research on the self-sensing demodulation method of magnetic bearing rotor displacement based on periodic peak current
Author:
Affiliation:

1.Key Laboratory of Advanced Manufacturing and Automation Technology in Guangxi Universities, Guilin University of Technology, Guilin 541006, China; 2.Guilin University of Aerospace Technology, Guilin 541004, China; 3.School of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前磁轴承自传感转子位移检测技术通常采用电流纹波作为解调信号,但该方法对纹波质量具有较强的依赖性,解析公式较为复杂,且对控制器的采样要求较高。为提高磁轴承自传感转子位移检测精度,基于降压斩波电路,提出一种周期峰值电流解调方法。首先对磁轴承的磁极线圈输入高频脉宽调制电压,利用高频脉宽电压的单个电流周期内的峰值电流与线圈电感建立非线性关系式,然后采用Newton-Raphson method对该关系式的非线性数值进行参数迭代,最后将迭代得到的结果与磁轴承的磁极线圈电感公式联立计算出磁轴承转子的位移。仿真和实验证明,磁轴承控制器的动态自传感转子位移实时检测能够有效跟踪电涡流传感器的转子位移检测信号,且两者的位移波动误差小于磁轴承悬浮控制要求的最低误差。在0.8 mm气隙的位移解调实验中, 使用不同电压幅值的5~15 kHz高频脉宽调制电压作为磁轴承转子自传感检测信号时,所有检测信号的静态自传感转子位移解调值与电涡流传感器的静态解调位移值误差都在可控范围内,且使用10 kHz的高频脉宽调制电压作为检测信号时,磁轴承的静态自传感位移解调值与电涡流传感器的静态位移解调位移值误差最大值不超过24.7 μm,最小为0.9 μm。

    Abstract:

    At present, the current ripple is usually used as the demodulation signal in the selfsensing shaft displacement detection technology of magnetic bearings. However, this method has a strong dependence on the quality of the ripple. The analytical formula is more complex, and the sampling requirements of the controller are higher. To improve the detection accuracy of the self-sensing shaft displacement of magnetic bearings, a periodic peak current demodulation method is proposed based on the buck chopper circuit. Firstly, the high frequency pulse width modulation voltage is input to the magnetic pole coil of the magnetic bearing. The nonlinear relationship between the peak current and the coil inductance in a single current cycle of the high-frequency pulse width signal is established. Then, the Newton-Raphson method is used to iterate the nonlinear values of the relationship. Finally, the displacement of the magnetic bearing rotor is calculated by combining the iterative results with the inductance formula of the magnetic pole coil of the magnetic bearing. Simulation and experiments show that the dynamic self-sensing rotor displacement real-time detection of the magnetic bearing controller can effectively track the rotor displacement detection signal of the eddy current sensor. The displacement fluctuation error of the two is less than the minimum error required by the magnetic bearing suspension control. In the displacement demodulation experiment of 0.8 mm air gap, when 5~15 kHz high-frequency pulse width modulation voltage with different voltage amplitudes is used as the self-sensing detection signal of the magnetic bearing rotor, the error between the static self-sensing rotor displacement demodulation value of all detection signals and the static demodulation displacement value of eddy current sensor is within the controllable range. When 10 kHz high-frequency pulse width modulation voltage is used as the detection signal, the maximum error between the static self-sensing displacement demodulation value of magnetic bearing and the static displacement demodulation displacement value of the eddy current sensor is not more than 24.7 μm, and the minimum is 0.9 μm.

    参考文献
    相似文献
    引证文献
引用本文

黄飞,张烈平,钟志贤,刘鹏,韦兰昱.基于周期峰值电流的磁轴承转子位移自传感解调方法研究[J].仪器仪表学报,2025,46(3):326-336

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码