基于编码器-解码器卷积神经网络的原子力显微镜针尖估计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP23 TH742

基金项目:

国家自然科学基金(52075517)项目资助


Tip estimation of atomic force microscopy based on encoder-decoder convolutional neural networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    :原子力显微镜(AFM)探针针尖形貌尺寸是表面微纳结构精确测量、局域物理化学特性准确表征中的关键参数。 基于 数学形态学的传统方法,针尖盲估计方法可以仅根据扫描图像来评估针尖形状尺寸,但其往往能给出的是针尖尺寸上限值并非 真正的针尖尺寸。 而且此种方法受扫描噪声影响较大,获得的尺寸精度难以完全满足需求。 针对该问题,基于编码器-解码器 架构的卷积神经网络,进行了 AFM 针尖形貌尺寸的稳定、准确的估计研究。 在网络的监督学习训练中,以包含不同半径和数量 的纳米颗粒结构,应用数学形态学膨胀算法模拟一系列设定半径针尖的扫描图像作为训练数据集,并以平均绝对误差作为损失 函数来更新网络参数。 结果表明,卷积神经网络模型对于针尖半径包含在训练集范围内的探针所得扫描图像具备准确预测针 尖尺寸的能力。

    Abstract:

    The geometry and dimensions of atomic force microscopy (AFM) probe tips are critical parameters for precise measurement of surface micro-nanostructures and accurate characterization of local physicochemical properties. While conventional blind tip estimation methods based on mathematical morphology can evaluate tip geometry solely from scanning images, they typically provide upper-bound estimates rather than true tip dimensions and suffer from significant sensitivity to scanning noise, resulting in insufficient measurement accuracy. To overcome these limitations, this study proposes a robust convolutional neural network ( CNN) with an encoder-decoder architecture for stable and accurate AFM tip characterization. During supervised learning, a training dataset was generated by simulating scanning images of nanoparticle structures with varying radii and densities through mathematical morphology dilation operations, representing tips with predefined dimensions. The network parameters were optimized using mean absolute error as the loss function. Experimental results demonstrate that the CNN model achieves accurate tip radius predictions for scanning images when the tip dimensions fall within the training range. However, the model exhibits reduced accuracy for tip sizes outside the training distribution. Notably, the model′ s predictive capability is significantly enhanced through noise-augmented training data, enabling precise tip dimension estimation from noisy scanning images without requiring additional denoising procedures. Validation using actual AFM scanning images confirms the method′s effectiveness in practical applications. Furthermore, simulations and experimental data verify the method′s extensibility for processing tip-effect-distorted images.

    参考文献
    相似文献
    引证文献
引用本文

雷艺彤,陈宇航.基于编码器-解码器卷积神经网络的原子力显微镜针尖估计[J].仪器仪表学报,2025,46(1):105-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码