数字孪生驱动的换热器结垢监测与厚度量化研究
DOI:
CSTR:
作者:
作者单位:

1.中国石油大学(北京)机械与储运工程学院北京102249; 2.国家市场监督管理总局重点实验室(油气生产装备 质量检测与健康诊断)北京102249; 3.中国石油集团安全环保技术研究院有限公司北京102206

作者简介:

通讯作者:

中图分类号:

TH165+.3

基金项目:

国家自然科学基金重点项目(52234007)、中国石油天然气集团有限公司科技项目(2023DJ6508)资助


Digital twin-driven fouling monitoring and thickness quantification study for heat exchangers
Author:
Affiliation:

1.College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 2.Key Laboratory of Oil and Gas Production Equipment Quality Inspection and Health Diagnosis, State Administration for Market Regulation,Beijing 102249, China; 3.CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有管式换热器结垢监测过度依赖历史运行工况,在波动与变工况下,现有工况与历史工况监测数据偏差大,难以准确感知结垢厚度,容易出现误报、漏报的问题。故开展了数字孪生驱动的管式换热器结垢监测与厚度量化研究。首先,构建高精度高保真的管式换热器有限元仿真模型,通过几何建模、非结构化四面体网格划分及合理仿真假设,获取运行过程中全部节点的物理信息数据。其次,利用本征正交分解(POD)提取关键低维模态,结合径向基函数(RBF)插值增强参数泛化能力,提出基于数据驱动的 POD-RBF 降阶方法;建立自适应采样布局优化方法,减少计算量的同时保证精度,生成多组训练数据,构建可实时预测运行状态的数字孪生模型,并通过卡尔曼滤波动态校正模型误差,提升实时预测精度。最后,基于传热系数公式推导结垢判断及厚度量化模型,通过对比实体与孪生体的总传热系数、进出口温度等参数判断结垢,利用污垢热阻与厚度的关联公式实现量化。试验验证采用透明壳体换热器,以饱和硫酸钙溶液为冷流体,通过监测进出口压力、流量、温度参数,测得健康工况下数字孪生体与实际运行误差在1%以内,结垢工况下结垢监测率为100%,结垢厚度感知误差为5%~25%,实现了变工况下的结垢监测与厚度量化。

    Abstract:

    Existing fouling monitoring of tubular heat exchangers relies heavily on historical operating conditions. Under fluctuating and variable operating states, significant deviations arise between the current and historical monitoring data, making it difficult to accurately capture fouling thickness and leading to false or missed alarms. This paper presents a study on digital twin-driven fouling monitoring and thickness quantification for tubular heat exchangers. First, a high-precision and high-fidelity finite element simulation model of the heat exchanger is developed. Through geometric modeling, unstructured tetrahedral meshing, and appropriate simulation assumptions, physical data from all nodes during operation are obtained. Second, key low-dimensional modes are extracted using proper orthogonal decomposition (POD), and parameter generalization is enhanced with radial basis function (RBF) interpolation. On this basis, a data-driven POD-RBF model order reduction method is proposed. An adaptive sampling layout optimization approach is also introduced to reduce computational costs while maintaining accuracy, enabling the generation of multiple training datasets and the construction of a digital twin model capable of real-time state prediction. Model errors are dynamically corrected via Kalman filtering to further improve prediction accuracy. Finally, a fouling detection and thickness quantification model is derived from the heat transfer coefficient formula. Fouling is identified by comparing overall heat transfer coefficient, inlet/outlet temperatures , and other parameters between the physical system and its twin. Thickness quantification is then achieved using the correlation between fouling thermal resistance and thickness. For experimental validation, a transparent-shell heat exchanger was used with saturated calcium sulfate solution as the cold fluid. By monitoring inlet/outlet pressures, flow rates, and temperatures, results show that under healthy conditions, the error between the digital twin and actual operation is within 1%. Under fouling conditions, the fouling detection rate reaches 100%, and the thickness sensing error ranges from 5%~25%, thus realizing reliable fouling monitoring and thickness quantification under variable operating conditions.

    参考文献
    相似文献
    引证文献
引用本文

张凤丽,李伟,田琨,王金江.数字孪生驱动的换热器结垢监测与厚度量化研究[J].仪器仪表学报,2025,46(8):10-18

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码