一种用于中介轴承故障诊断的网络模型Res2APCNN
DOI:
CSTR:
作者:
作者单位:

1.沈阳航空航天大学航空发动机学院沈阳110136; 2.中国航发沈阳发动机研究所沈阳110015

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

国家自然科学基金(12172231)、辽宁省兴辽英才计划(XLYC2203042)、辽宁省属本科高校基本科研业务费专项(LJ222410143069)项目资助


A network model for inter-shaft bearing fault diagnosis Res2APCNN
Author:
Affiliation:

1.School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China; 2.Shenyang Engine Research Institute, Aero Engine Corporation of China, Shenyang 110015, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航空发动机中介轴承在强噪声背景下的健康监测问题,提出了一种结合数据融合和自适应注意力机制的多尺度残差神经网络(Res2APCNN)模型。首先,采用格拉姆角差场(GADF)、格拉姆角和场(GASF)以及马尔科夫转移场(MTF)方法,将轴承信号转化为二维灰度图像,并将这3种图像分别映射至RGB的3个通道,构建复合彩色图像,从而增强对时间序列信息的捕获能力。其次,引入Res2Net模块,通过并行卷积操作提取不同尺度的信息,过滤噪声干扰并优化信息流动。再次,嵌入自适应并联特征融合模块,对各特征维度的重要性赋予差异化权重,对关键特征信号进行筛选和放大。最后,通过特征提取和分类模块输出中介轴承故障类型。采用意大利都灵理工大学、哈尔滨工业大学轴承数据集和自建试验台数据集对模型进行验证。实验结果表明,所提出的Res2APCNN模型在强噪声环境下表现出优异的故障诊断性能,与当前先进方法相比,在都灵理工大学数据集上,相较于IDRSN方法准确率提升了1.52%;在HIT数据集上,相较于MC-CNN方法准确率提升了6.65%;在自建数据集上,相较于Wen-CNN方法准确率提升了2.35%。此外,该模型的诊断准确率波动最小,稳定性最高。在强噪声条件下,Res2APCNN模型仍能保持较高的识别精度,展现出良好的抗干扰能力。

    Abstract:

    A multi-scale residual neural network (Res2APCNN) model combining data fusion and adaptive attention mechanism is proposed to monitor the health of aero-engine inter-shaft bearing under strong noise. Firstly, the bearing signals are converted into two-dimensional grayscale images by using the Gram angular difference field (GADF), Gram angular sum field (GASF) and Markov transfer field (MTF) methods. These three images are mapped to the RGB channels respectively to construct composite color images, thus enhancing the capture ability of time series information. Secondly, Res2Net module is introduced to extract multi-scale information through parallel convolution operation, filter noise interference and optimize information flow. Thirdly, the adaptive parallel feature fusion module is embedded to assign differentiated weights to feature dimensions, enabling the screening and amplification of key feature signals. Finally, the fault types of inter-shaft bearings are identified through a feature extraction and classification module. The proposed model is verified by using the bearing datasets of Polytechnic University of Turin in Italy and Harbin Institute of Technology, as well as the self-built test bench dataset. The experimental results show that the proposed Res2APCNN model demonstrates excellent fault diagnosis performance in a strong noise environment. Compared with advanced existing methods, the model achieves a 1.52% increase in accuracy over the IDRSN method on the Turin dataset, a 6.65% increase over the MC-CNN method on the HIT dataset, and a 2.35% increase over the Wen-CNN method on the self-built dataset. Furthermore, the diagnostic accuracy rate of this model exhibits the least fluctuation, indicating superior stability. Even under strong noise conditions, the Res2APCNN model can still maintain a high recognition accuracy and show good anti-interference ability.

    参考文献
    相似文献
    引证文献
引用本文

田晶,王敬迪,丁小飞,林政,高明浩.一种用于中介轴承故障诊断的网络模型Res2APCNN[J].仪器仪表学报,2025,46(8):49-62

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码