改进ResNet结合MKSVDD的谐波减速器多状态同尺度定量评估方法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学黑龙江省模式识别与信息感知重点实验室哈尔滨150080; 2.哈尔滨工业大学自动化测试与控制研究所哈尔滨150001

作者简介:

通讯作者:

中图分类号:

TN911.7TH165.3

基金项目:

国家自然科学基金项目(52375533)、黑龙江省自然科学基金项目(PL2024F018)、山东省自然科学基金项目(ZR2023ME057)、哈尔滨市制造业科技创新人才项目(2023CXRCCG017)资助


Same-scale quantitative assessment method for multiple states of a harmonic reducer based on improved ResNet and MKSVDD
Author:
Affiliation:

1.Heilongjiang Province Key Laboratory of Pattern Recognition and Information Perception, Harbin University of Science and Technology, Harbin 150080, China; 2.Automatic Test and Control Institute, Harbin Institute of Technology, Harbin 150001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对谐波减速器故障程度难以精确量化以及不同故障位置无法在同一尺度下定量分析的问题,提出一种改进深度残差网络(ResNet)结合多核支持向量数据描述(MKSVDD)的谐波减速器多状态同尺度下的定量评估方法。该方法首先提出一种新的谐波减速器多状态同尺度定量评估框架,并对微弱故障敏感的声发射信号进行连续小波变换构建二维时频图数据集;其次提出卷积注意力模块改进ResNet以充分挖掘二维时频图的深层特征;再引入多核核函数改进支持向量数据描述,基于谐波减速器正常状态的深层特征构建MKSVDD健康状态评估模型;然后,计算不同故障程度的特征相对于正常状态球心的距离,构建评估指标,通过拟合得到定量评估曲线;此外,根据谐波减速器的结构和声发射信号传播机理,提出相对距离补偿方案以构建多状态评估指标,实现谐波减速器不同健康状态在同一尺度下的定量评估。通过搭建谐波减速器实验台,对未知故障程度的数据进行多组对比实验的结果表明,改进后的深度残差网络提取到的特征更聚集,所提方法能实现谐波减速器不同故障位置在同一尺度下的定量分析,且评估误差不超过3.2%,有效完成谐波减速器多状态同尺度的定量评估。

    Abstract:

    To address the difficulty in accurately quantifying the fault degree of harmonic reducers and the inability to perform same-scale quantitative analysis for different fault locations, a same-scale quantitative assessment method is proposed for multiple states of harmonic reducer based on improved deep residual network (ResNet) and multi-kernel support vector data description (MKSVDD). First, a new same-scale quantitative assessment framework for multiple states of harmonic reducer is proposed, and continuous wavelet transform is applied to acoustic emission signals sensitive to weak faults to construct a two-dimensional time-frequency image dataset. Then, a convolutionalattention module is used to improve ResNet in order to fully extract the deep features of the two-dimensional time-frequency images. Furthermore, a multi-kernel function is introduced to enhance the support vector data description, and an MKSVDD health state assessment model is constructed based on the deep features of the harmonic reducer in the normal state. Next, the distance between the features of different fault degrees and the center of the hypersphere under the normal condition is calculated to construct the assessment indicators, and the quantitative assessment curve is obtained by fitting these indicators. In addition, based on the structure of the harmonic reducer and the propagation mechanism of acoustic emission signals, a relative distance compensation scheme is proposed to construct the multi-state assessment indicator, thereby achieving quantitative assessment of different health states for harmonic reducer under a unified scale. Through the establishment of a harmonic reducer test bench and multiple comparative experiments on data with unknown fault degrees, the results show that the features extracted by the improved deep residual network are more compact. The proposed method enables same-scale quantitative assessment of different fault locations, with an assessment error not exceeding 3.2%, effectively completing the same-scale quantitative assessment of harmonic reducer in multiple states.

    参考文献
    相似文献
    引证文献
引用本文

孙宇林,罗双,康守强,王玉静,刘连胜.改进ResNet结合MKSVDD的谐波减速器多状态同尺度定量评估方法[J].仪器仪表学报,2025,46(6):304-316

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码