基于双分辨率栅格地图的机器人路径规划研究
DOI:
CSTR:
作者:
作者单位:

1.湖北汽车工业学院智能网联汽车学院十堰442002; 2.航天时代飞鸿技术有限公司北京102199

作者简介:

通讯作者:

中图分类号:

TH166TP242

基金项目:


Research on robot path planning based on dual-resolution grid maps
Author:
Affiliation:

1.School of Intelligent Connected Vehicle, Hubei University of Automotive Technology, Shiyan 442002, China; 2.Aerospace Times Feihong Technology Co., Ltd., Beijing 102199, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非平坦地形环境下移动机器人路径规划存在的存储效率低与地形适应性不足问题,提出一种基于双分辨率分层栅格地图的改进A*路径规划算法。该算法通过构建由高分辨率障碍物层和低分辨率高程层组成的复合栅格地图,其中障碍物层采用二值化表征刚性障碍分布,高程层基于数字高程模型量化地形起伏特征,从而实现地形特征的分层描述。在此基础上改进A*算法,重构其动态加权复合代价函数,改进后的算法在移动代价函数中引入地形坡度约束、能耗权重与安全系数三重优化维度,将启发式函数扩展为融合空间距离、坡度均方根及地形风险值的多模态评价指标,并设计基于距离敏感的动态权重调节策略,通过Sigmoid函数实现全局启发式搜索与局部路径优化的平滑过渡。实验表明,在边长为700 m×700 m的矩形测绘范围内,双分辨率分层栅格地图结构相较三维栅格地图减少61.7%存储负载;相较于传统A*算法,该方法规划路径的高程波动标准差降低38.9%。机器人实体实验验证了该方法可有效规避陡坡地形与障碍物。工程应用实验表明,该方法在在油田巡检等大尺度非结构化场景中内存占用减少62%,路径规划响应时间低于6.9 s,规划的路径具备平缓低起伏特性。

    Abstract:

    To enhance terrain adaptability and storage efficiency in mobile robot path planning on non-flat terrains, an improved A* path planning algorithm based on the dual-resolution hierarchical grid map is proposed. This map includes a high-resolution obstacle layer using binary representation for rigid obstacles and a low-resolution elevation layer quantifying terrain undulations via a digital elevation model. On this basis, the A* algorithm is improved by reconstructing its dynamic weighted composite cost function. The improved algorithm introduces three optimization dimensions into the mobility cost function, including slope constraints, energy consumption weight, and safety factor. The heuristic function is extended to a multimodal evaluation metric that integrates spatial distance, root mean square slope, and terrain risk values. A distance-sensitive dynamic weight adjustment strategy is designed, and the Sigmoid function is utilized to achieve a smooth transition between global heuristic search and local path optimization. Experiments show that within a rectangular mapping range of 700 m×700 m, the dual-resolution hierarchical grid map structure reduces storage load by 61.7% compared with a three-dimensional grid map. Compared with traditional A* algorithms, this method reduces the standard deviation of elevation fluctuations in planned paths by 38.9%. Real robot experiments demonstrate that this method effectively avoids steep slopes and obstacles. Engineering application experiments indicate that this method reduces memory usage by 62% in large-scale unstructured scenarios such as oilfield inspections, with path planning response times under 6.9 s and the planned paths exhibiting gentle low undulation characteristics.

    参考文献
    相似文献
    引证文献
引用本文

苏毅,吴文欢,李鼎鑫.基于双分辨率栅格地图的机器人路径规划研究[J].仪器仪表学报,2025,46(3):86-100

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码