航空壁板柔性装配中关键形位参量计算测量方法
DOI:
CSTR:
作者:
作者单位:

大连理工大学高性能精密制造全国重点实验室大连116024

作者简介:

通讯作者:

中图分类号:

TH165V262

基金项目:

国家自然科学基金(52125504)、大连市高层次人才创新支持计划(2023RG001)项目资助


Computational measurement method for key geometric parameters in the flexible assembly process of aircraft panels
Author:
Affiliation:

State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    柔性装配已成为弱刚性航空壁板柔顺装配技术的发展趋势。在此过程中,壁板定位目标与实时面形等关键形位参量的在线测量,是实现高保形、低应力的壁板柔顺装配的前提。然而,装配过程中测量空间狭小、近封闭,测量可达性不足,加之弱刚性壁板形状稳定性低,易发生随机变形,壁板面形直接测量的效率与精度难兼顾,致使上述关键形位参量的在线测量极具挑战。为此,提出了一种航空壁板柔性装配中关键形位参量计算测量方法,通过稀疏可测数据与物理解析模型融合,实现了壁板定位目标与实时面形等直接测量不可达形位参量的在线测量。首先,提出了模态叠加的壁板定位目标计算测量方法,结合结构模态振型与稀疏可测点位移,实时计算出定位工装全局位移,实现了壁板定位目标的在线测量;然后,提出了几何方程约束的壁板面形计算测量方法,以位移-应变关联为约束,结合离散应变测量,实现了壁板面形的在线测量;最后,为了验证所提方法的有效性及精度,搭建了飞机平尾壁板柔性装配缩比实验平台,开展了关键形位参量在线监测实验。结果表明,所提方法壁板定位目标在线测量误差<75.1 μm,壁板面形在线测量误差<18.11%,单次计算测量耗时分别<0.005和0.01 s,为航空壁板柔性装配提供了关键数据支撑,推动了柔性航空装配技术升级。

    Abstract:

    Flexible assembly has emerged as the dominant technique for the compliant assembly of low-stiffness aircraft wall panels. Critical to this process is the online measurement of key geometric parameters—such as panel positioning targets and real-time surface profiles—to ensure high precision and minimal residual stress. However, the restricted accessibility within the confined, near-enclosed tooling environment, coupled with the inherently poor shape stability of low-stiffness panels, renders direct measurement methods inefficient and prone to errors, creating significant obstacles for real-time monitoring. To address these challenges, this paper introduces a computational measurement approach for estimating key geometric parameters during flexible panel assembly. By combining sparse measurable data with physics-based analytical models, the method enables real-time estimation of parameters that are otherwise difficult to access directly. Specifically, a modal superposition-based technique is developed to compute the global displacement of positioning tooling from limited displacement measurements, facilitating continuous tracking of panel positioning targets. Additionally, a surface profile reconstruction method is proposed, which integrates geometric constraints and the displacement-strain relationship to fuse discrete strain data for real-time shape estimation. Validation was conducted on a downscaled platform simulating the flexible assembly of aircraft horizontal tail panels. The results demonstrate that the proposed method achieves positioning target measurement errors below 75.1 μm and surface profile errors under 18.11%, with computation times shorter than 0.005 s and 0.01 s, respectively. This method provides reliable real-time data support for compliant aircraft panel assembly and advances the development of flexible assembly technologies in aerospace manufacturing.

    参考文献
    相似文献
    引证文献
引用本文

陈启航,张洋,逯永康,崔家诚,刘巍.航空壁板柔性装配中关键形位参量计算测量方法[J].仪器仪表学报,2025,46(7):41-51

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码