空间频域融合的视网膜血管分割方法
DOI:
CSTR:
作者:
作者单位:

1.沈阳工业大学人工智能学院沈阳110870; 2.东北大学机器人科学与工程学院沈阳110167; 3.北京大学未来技术学院北京100091

作者简介:

通讯作者:

中图分类号:

TP391TH79

基金项目:

国家自然科学基金项目(62206183)资助


Retinal vessel segmentation method based on fusion of frequency domain and spatial domain
Author:
Affiliation:

1.School of Artificial Intelligence, Shenyang University of Technology, Shenyang 110870, China; 2.Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China; 3.Future Technology College, Peking University, Beijing 100091, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视网膜血管的精确分割对于诊断多种眼部疾病至关重要,它不仅有助于识别糖尿病、动脉硬化和心血管疾病等医学问题,还能显著提升医生对患者疾病的诊断和治疗能力。现有的卷积神经网络方法虽然在空间域内通过卷积操作捕捉局部特征能力表现出色,但在获取全局空间特征信息方面存在局限性。而频域方法虽能捕获图像的整体频谱分布和全局结构特征,却因频域变换过程中的空间信息模糊化处理,难以精确定位局部特征并保留高频细节信息。提出了一种空间频域融合的视网膜血管分割方法,该方法结合了空间域和频域方法在获取局部和全局特征信息方面的优势。首先,设计双支路的空间频域特征提取与融合模块,在编码阶段融合频域和空间域的特征信息,旨在减少下采样过程中丢失的细节特征。此外,引入多尺度高斯滤波器,以提高模型定位血管边界和保持小血管连贯性的能力。最后,通过空间频域自适应融合模块动态计算特征图各区域的融合权重,提升小血管分割的准确性。在DRIVE和CHASE_DB1这两个主流开源数据集上进行了性能测试,其准确率分别为96.9%和97.81%。实验结果表明该研究的方法在血管分割的准确性、小血管的连贯性和应对病变的鲁棒性方面均展现出了竞争优势。

    Abstract:

    Accurate segmentation of retinal blood vessels plays a vital role in diagnosing various eye diseases. It not only aids in identifying conditions such as diabetes, arteriosclerosis, and cardiovascular diseases but also enhances clinicians′ ability to diagnose and treat patients effectively. While existing convolutional neural network (CNN) approaches excel at capturing local spatial features through convolutional operations, they face challenges in extracting global spatial information. Conversely, frequency domain methods can capture the overall spectral distribution and global structural features of images but struggle to precisely locate local details and preserve high-frequency information due to spatial information blurring during frequency transformation. To address these limitations, this study proposes a retinal blood vessel segmentation method based on spatial-frequency domain fusion, leveraging the strengths of both domains for local and global feature extraction. The approach features a dual-branch spatial-frequency feature extraction and fusion module in the encoding stage, designed to integrate frequency and spatial features and mitigate detail loss during downsampling. Additionally, a multi-scale Gaussian filter is incorporated to enhance the model′s capability in accurately locating vessel boundaries and preserving continuity of small vessels. Finally, an adaptive spatial-frequency fusion module dynamically calculates fusion weights across feature map regions, improving the precision of small vessel segmentation. Experiments conducted on two widely-used open-source datasets, DRIVE and CHASE_DB1, demonstrate accuracy rates of 96.9% and 97.81%, respectively. Results indicate that the proposed method achieves competitive performance in segmentation accuracy, consistency of small vessel detection, and robustness in handling lesions.

    参考文献
    相似文献
    引证文献
引用本文

宋伟伟,许茗,于晓升,李海星,王宏宇.空间频域融合的视网膜血管分割方法[J].仪器仪表学报,2025,46(5):195-204

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码