面向小样本纹理分类的多模态证据融合框架
DOI:
CSTR:
作者:
作者单位:

1.南昌大学先进制造学院南昌330031; 2.智能机器人江西省重点实验室南昌330031; 3.南昌大学机器人研究所南昌330031

作者简介:

通讯作者:

中图分类号:

TH7TP391

基金项目:

国家自然科学基金(62373181,62163024)、江西省“双千计划”(jxsq2023201097)、江西省杰出青年基金(20232ACB212002)、江西省重点研发计划青年科学家(S20252488)、国家重点研发计划“智能机器人”专项(2023YFB4704903)项目资助


Small-sample multi-modal evidence fusion framework for texture classification
Author:
Affiliation:

1.School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China; 2.Jiangxi Key Laboratory of Intelligent Robot, Nanchang 330031, China; 3.Robotics Research Institute, Nanchang University, Nanchang 330031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统多模态融合方法假设各模态数据在不同样本上的质量分布均匀,未能充分考虑模态间信息可靠性的动态变化。这种静态融合策略在数据质量异质性较强的情境下,难以对低质量模态进行适应性调控,从而导致信息融合过程受噪声干扰或模态缺失等因素的影响较大,无法充分发挥融合优势。当样本数量较少时,上述问题进一步削弱了分类器的鲁棒性。为增强模型在小样本纹理分类任务上的可靠性和适应性,提出一种面向小样本纹理分类的多模态证据融合框架(SMEF-TC)。在主观逻辑架构下,采用狄利克雷分布统一刻画类别概率与预测不确定性,使模型在推理阶段无需额外的不确定性量化步骤,有效避免了传统贝叶斯推断所依赖的高成本计算。在考虑各个模态不确定性的基础上,通过证据理论进行融合,使模型能够自适应地调整不同模态在决策中的贡献,避免冗余信息的干扰。相比传统方法,SMEF-TC在多模态融合过程中不仅考虑了各模态的信息证据,还考虑了预测不确定性,这种策略让模型在噪声环境、部分模态缺失或数据质量不均衡的情况下,仍能维持较高的识别精度。实验结果表明,所提出的SMEF-TC框架在公开的纹理数据集LMT-108和LMT-184上分别取得96.53%和94.70%的准确率,该方法在面向小样本纹理辨识任务时,相比现有方法更为精准和稳健。

    Abstract:

    Conventional multi-modal fusion approaches assume that quality is uniformly distributed across samples, overlooking dynamic inter-modal reliability. Such static strategies struggle to down-weight low-quality modalities when data heterogeneity is high, rendering the fused representation susceptible to noise, missing modalities, and other degradations, thereby diminishing fusion benefits. Under small-sample conditions, these limitations further erode classifier robustness. To enhance reliability and adaptability in small-sample texture recognition, we propose the small-sample multimodal evidence fusion framework for texture classification (SMEF-TC). Built on subjective logic, SMEF-TC leverages a Dirichlet distribution to jointly model class probabilities and epistemic uncertainty, thereby eliminating extra uncertainty-quantification during inference and the high computational overhead of traditional Bayesian methods. Incorporating modality-specific uncertainties, evidence theory fuses multi-modal information, enabling the model to adaptively recalibrate each modality′s contribution and effectively suppress redundant or noisy cues. By simultaneously accounting for information evidence and predictive uncertainty, SMEF-TC retains high recognition accuracy under conditions of noise, modality absence, and imbalanced quality. Experiments on the public LMT-108 and LMT-184 texture datasets yield accuracies of 96.53% and 94.70%, respectively, confirming that SMEF-TC offers superior precision and robustness for small-sample texture classification compared with existing techniques.

    参考文献
    相似文献
    引证文献
引用本文

熊鹏文,胡慕烨,黄雨轩,曾成,叶艳辉.面向小样本纹理分类的多模态证据融合框架[J].仪器仪表学报,2025,46(6):154-165

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码