联合“状态估计-轨迹预测”的GNSS-RTK可信定位
DOI:
CSTR:
作者:
作者单位:

1.西南石油大学机电工程学院成都610500; 2.重庆赛迪奇智人工智能科技有限公司重庆400074

作者简介:

通讯作者:

中图分类号:

TN96TH89

基金项目:

国家自然科学基金青年科学基金项目(62303386)、四川省自然科学基金面上项目(2024NSFSC0525)、重庆市渝中区技术创新与应用发展项目(20240103)资助


Joint state estimation and trajectory prediction-based GNSS-RTK reliable localization
Author:
Affiliation:

1.School of Electromechanical Engineering, Southwest Petroleum University,Chengdu 610500, China; 2.Chongqing Saidi Qizhi Artificial Intelligence Technology Co., Ltd.,Chongqing 400074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    可靠、高精度的位置信息是保证无人运输列车安全行驶的前提条件,然而实际钢铁生产运输场景中多径干扰和信号遮挡会造成GNSS-RTK定位数据中出现大量伪固定解,导致列车定位结果不可信,严重威胁列车运行安全。针对上述问题,提出了一种联合“状态估计-轨迹预测”一体化的GNSS-RTK可信定位方法。首先,构建了GNSS-RTK双差定位模型,并利用最小二乘算法实现GNSSRTK浮点解的解算。在此基础上,提出了联合模糊度降相关与ratio校验的GNSS-RTK浮点解固定方法,实现了厘米级的高精度定位。进一步,针对多径干扰和信号遮挡场景下ratio校验固定阈值引入的伪固定解问题,不同于传统方法中依赖多源传感器感知信息进行交叉验证的思路,通过对比列车当前时刻位置状态估计结果与之前时刻预测轨迹之间的差异,挖掘列车运动轨迹时空特征,能够在不增加硬件设备的条件下,实现对GNSS-RTK伪固定解的快速识别与校准,提高列车定位结果的可靠性。最后,所提方法在半遮挡场景、城市峡谷场景和钢铁运输现场开展了实际测试。实验结果表明,其能够在实现GNSS-RTK高精度定位的同时,准确识别定位过程中输出的伪固定解数据,伪固定解识别率优于基于阈值检测和轨迹预测的异常定位检测方法,保障实际工业场景列车定位结果的高可靠性。

    Abstract:

    Accurate and reliable location information is essential for the safe operation of unmanned transport trains. However, in steel production and transportation environments, multipath interference and signal blockage often produce numerous pseudo-fixed solutions in GNSS-RTK positioning data, leading to unreliable train position estimates and posing serious safety risks. To tackle these challenges, this paper presents a robust GNSS-RTK localization method that integrates state estimation with trajectory prediction. Initially, the double-difference positioning model combined with the least squares algorithm is employed to obtain the GNSS-RTK float solution. This float solution is then fixed to achieve centimeter-level accuracy using an ambiguity decorrelation algorithm and ratio test. To overcome the limitations of the fixed threshold in the ratio test—which can result in pseudo-fixed solutions under multipath interference and signal obstruction—this approach diverges from conventional multi-sensor cross-validation methods. Instead, it leverages the spatiotemporal characteristics of the train′s motion by comparing the current position against the predicted trajectory derived from previous states. This enables rapid identification and correction of pseudo-fixed solutions without requiring additional hardware, thereby enhancing positioning reliability. The method was validated across semi-occluded environments, urban canyons, and steel transportation sites. Experimental results demonstrate its superior ability to detect pseudo-fixed solutions accurately while maintaining high-precision localization. Compared to threshold- and trajectory prediction-based anomaly detection methods, it achieves higher recognition rates, ensuring dependable train positioning in real-world industrial scenarios.

    参考文献
    相似文献
    引证文献
引用本文

赵晨昊,张志勇,方鑫,杜雪飞,谭锐.联合“状态估计-轨迹预测”的GNSS-RTK可信定位[J].仪器仪表学报,2025,46(5):264-276

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码