高轨卫星目指自准直测量光斑实时定位方法
DOI:
CSTR:
作者:
作者单位:

1.天津大学精密仪器与光电子工程学院天津300072; 2.北京信息科技大学光电测试技术及仪器教育部 重点实验室北京100192; 3.北京信息科技大学光纤传感与系统北京实验室北京100016

作者简介:

通讯作者:

中图分类号:

TH712

基金项目:

国家自然科学基金(52375524)项目资助


Real-time light spot localization method for target-pointing measurement with autocollimators in high-orbit satellites
Author:
Affiliation:

1.School of Precision Instrument and OptoElectronics Engineering, Tianjin University, Tianjin 300072, China; 2.Key laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China; 3.Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高轨卫星目标指向在轨自准直测量系统无法在有限的计算和存储资源下实现光斑实时定位的问题,提出了一种基于并行流水线的自准直仪光斑无存储实时定位方法。基于质心计算的分解特性设计了分解质心计算方法,计算行或列质心后再合成二维质心,实现了光斑质心的无存储计算,避免了对原始图像数据的全局存储需求;基于并行流水线架构设计了滑动相关滤波方法及其FPGA实现方案,采用高斯负二阶导数模板,通过滑动窗口内像素与模板的实时相关性计算有效抑制背景梯度噪声和随机噪声,依托流水线乘法器、加法树累加器等硬件优化设计,确保在数据流式输入过程中同步完成滤波运算,降低噪声影响的同时保证了计算的实时性。采用仿真和实机部署方式完成验证,结果表明分解质心法在确保计算精度的前提下仅利用FPGA片内少量RAM即可在读取光斑信息后246个时钟周期内完成滤波和质心计算,在25 MHz时钟下计算时间仅为9.84 μs,计算结果的平均偏差为0.032 pixels,具有较高实时性和计算精度。分解质心法可显著提升高轨卫星光学载荷视轴指向在轨监测数据反馈实时性,为高速机动目标的跟踪定位提供实时数据支持,在航天遥感领域有重要应用价值与前景。

    Abstract:

    Aiming at the problem that high-orbit satellite target-pointing on-orbit autocollimation systems cannot achieve real-time light spot localization under limited computational and storage resources, this paper proposes a storage-free real-time localization method for autocollimator light spots based on a parallel pipeline architecture. By utilizing the decomposition characteristics of centroid calculation, a stepwise centroid computation method is designed: The row or column centroids are calculated first and then combined into a two-dimensional centroid, realizing storage-free computation of the light spot centroid and avoiding the global storage requirements for the original image data. A sliding correlation filtering method and its FPGA implementation scheme are developed based on the parallel pipeline architecture. A Gaussian negative second derivative template was used to effectively suppress background gradient noise and random noise through real-time correlation calculation between pixels in the sliding window and the template. Hardware optimization designs such as pipeline multipliers and additive tree accumulators were utilized to ensure synchronous filtering operations during data streaming input, reducing noise impact while ensuring real-time computation. The method was verified through simulations and actual hardware deployment. Results demonstrate that, under the premise of ensuring computational accuracy, the proposed method completes filtering and centroid calculation within 246 clock cycles after reading the light spot information, utilizing only a small amount of FPGA on-chip RAM. At a 25 MHz clock frequency, the computation time is only 9.84 μs, with an average deviation of 0.032 pixels, achieving both high precision and real-time capability. This method can significantly improve the real-time feedback of on-orbit monitoring data for optical payload line-of-sight pointing in high-orbit satellites, providing real-time data support for tracking and locating high-speed maneuvering targets, with important application value and prospects in aerospace remote sensing.

    参考文献
    相似文献
    引证文献
引用本文

张旭,段发阶,孙广开,朱云鸿,祝连庆.高轨卫星目指自准直测量光斑实时定位方法[J].仪器仪表学报,2025,46(8):206-217

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码