复杂背景干扰下基于时空关联的低慢小红外目标检测方法
DOI:
CSTR:
作者:
作者单位:

国防科技大学智能科学学院长沙410072

作者简介:

通讯作者:

中图分类号:

TP391.4TH865

基金项目:


Low-slow small infrared target detection method based on spatio-temporal correlation under complex background interference
Author:
Affiliation:

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提升复杂背景干扰下对低慢小无人机红外目标探测能力,提出了一种复杂背景干扰下基于时空关联的低慢小红外目标检测方法。首先,在单帧静态目标检测研究方法上,基于YOLOv8检测算法改进,通过引入无跨步卷积层和P2小目标检测头,解决下采样环节带来的小目标检测细粒度信息丢失问题并提高了小目标检测能力;其次,在动态轨迹预测研究方法上,通过引入卡尔曼滤波算法实现无人机目标轨迹预测;最后将单帧静态目标检测方法和基于卡尔曼滤波的动态轨迹预测关联,实现当低慢小无人机目标检测信息丢失时,依据置信度判别切换动态轨迹预测方法持续获取目标位置,实现在同一序列中对目标的帧间信息进行对齐,并完成帧间信息的交互,在时间维度上建立关联。实验结果表明,改进的单帧静态目标检测算法YOLOv8-P2-SPD平均精度mAP@0.5达到了86.8%,在云层、山地和楼宇等复杂背景下,提出的基于时空关联的低慢小红外目标检测方法相比单独使用单帧静态目标检测算法精确率可以提高12.1%,查全率可以提高12.2%。该方法可以有效弥补深度学习方法对复杂背景干扰下低慢小目标检测的不足,适用于复杂干扰背景下的低慢小目标检测。

    Abstract:

    To enhance the detection performance of infrared targets for low-altitude, slow-moving, and small (LSS) UAVs under complex background interference, a spatio-temporal correlation-based detection method is proposed. This approach addresses both single-frame static object detection and dynamic trajectory prediction. First, for static detection in single frames, improvements are made to the YOLOv8 algorithm to mitigate the loss of fine-grained information typically caused by downsampling. This is achieved by introducing a no-stride convolutional layer and a P2 detection head, thereby enhancing the capability to detect small targets. Second, for dynamic trajectory prediction, a Kalman filter is employed to estimate and track the UAV's motion trajectory. By integrating this prediction module with the single-frame detector, the system can maintain target localization even when detection confidence drops. Based on confidence evaluation, the system adaptively switches to the trajectory prediction mode to ensure continuous tracking. Temporal correlation is further reinforced by aligning target information across consecutive frames and enabling inter-frame information interaction, effectively establishing spatio-temporal associations. Experimental results show that the improved YOLOv8-P2-SPD model achieves an average precision (mAP@0.5) of 86.8% for single-frame detection. Under challenging backgrounds such as clouds, mountains, and urban structures, the proposed spatio-temporal correlation method improves detection accuracy by 12.1% and recall by 12.2% compared to single-frame detection alone. This approach effectively addresses the limitations of conventional deep learning models in detecting LSS targets under complex background interference and is well-suited for real-world deployment in such scenarios.

    参考文献
    相似文献
    引证文献
引用本文

卜德森,苏绍璟,王迎龙,孙备,孙晓永.复杂背景干扰下基于时空关联的低慢小红外目标检测方法[J].仪器仪表学报,2025,46(5):183-194

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码