结合几何误差模型和神经网络的三坐标测量机全面误差补偿方法
DOI:
CSTR:
作者:
作者单位:

1.天津大学精密测试技术及仪器全国重点实验室天津300072; 2.海克斯康制造智能技术(青岛)有限公司青岛266000

作者简介:

通讯作者:

中图分类号:

TH711

基金项目:

山东省重点研发计划项目(2023CXGC010209)资助


Comprehensive error compensation method for coordinate measuring machine based on geometric error model and neural network
Author:
Affiliation:

1.State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; 2.Hexagon Manufacturing Intelligence (Qingdao) Co., Ltd., Qingdao 266000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    三坐标测量机作为精密测量与高端制造领域的核心设备,其测量精度受到几何误差和非几何误差的制约。传统基于激光干涉仪的误差补偿方法存在效率低下及补偿模型不完善的问题,难以满足日益提升的测量精度需求。针对上述挑战,提出了一种结合几何误差模型与神经网络的综合误差补偿方法,实现对复杂误差的高效精准补偿。针对几何误差,基于刚体运动学构建误差模型,并采用自适应差分演化算法实现高精度的误差参数辨识;针对非几何误差,设计了一种基于邻域误差特征的新型神经网络,利用多头自注意力机制深入捕捉邻域测量空间中的误差分布特性,相较于传统仅以目标点位置为输入的网络方法显著提升了预测效果。实验结果表明,采用所提方法补偿后,标称精度为2.8+L/400 μm的三坐标测量机最大探测误差降至0.35 μm,长度测量误差为0.5+L/400 μm,较原厂标称数据有明显提升,充分验证了其适用性和实用价值。此外,与传统误差补偿方法相比,所提方法在几何误差和非几何误差上均展现了显著优势,实现了高鲁棒性,高效且准确的全面误差补偿。该方法为三坐标测量机等精密测量设备的误差控制与性能优化提供了切实可行的新途径,具有重要的工程推广意义和广阔的应用前景。

    Abstract:

    Coordinate measuring machines (CMMs), as core equipment in precision measurement and advanced manufacturing, have their measurement accuracy constrained by both geometric and non-geometric errors. Traditional error compensation methods based on laser interferometry suffer from low efficiency and incomplete compensation models, failing to meet the increasingly stringent accuracy requirements. To address these challenges, this paper proposes a comprehensive error compensation approach that integrates geometric error modeling with neural network techniques to achieve efficient and precise correction of complex errors. For geometric errors, an error model is constructed based on rigid body kinematics, and an adaptive differential evolution algorithm is employed to realize high-precision parameter identification. For non-geometric errors, a novel neural network leveraging neighborhood error features is designed, which utilizes a multi-head self-attention mechanism to deeply capture the error distribution characteristics within the measurement space. Compared to traditional networks that rely solely on the target point position as input, the proposed network significantly improves prediction accuracy. Experimental results demonstrate that, after compensation using the proposed method, the maximum probing error of a CMM with a nominal accuracy of 2.8+L/400 μm is reduced to 0.35 μm, and the length measurement error is improved to 0.5+L/400 μm, showing clear enhancement over the factory-specified accuracy and fully validating the method′s applicability and practicality. Furthermore, compared with conventional compensation techniques, the proposed approach exhibits significant advantages in compensating both geometric and non-geometric errors, achieving robust, efficient, and accurate comprehensive error compensation. This method offers a feasible and effective solution for error control and performance optimization in CMMs and other precision measurement instruments, holding substantial engineering significance and broad application prospects.

    参考文献
    相似文献
    引证文献
引用本文

梁健,封善斋,甄明吉,宫鹏飞,吴斌.结合几何误差模型和神经网络的三坐标测量机全面误差补偿方法[J].仪器仪表学报,2025,46(7):150-159

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码