动态辐射条件下的双源感知室内位置测算方法
DOI:
CSTR:
作者:
作者单位:

江南大学物联网技术应用教育部工程研究中心无锡214122

作者简介:

通讯作者:

中图分类号:

TN96TH89

基金项目:

长三角科技创新共同体联合攻关项目(2023CSJGG1700)资助


Dual-source perception indoor localization algorithm under dynamic radiation conditions
Author:
Affiliation:

Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Jiangnan University, Wuxi 214122, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在地下车库复杂的室内环境中,传统基于信号强度指示(RSSI)的指纹定位技术因辐射条件波动、多径效应及信号干扰等因素,存在指纹特征失真与定位结果偏移现象。针对此问题,提出一种动态辐射条件下的双源感知室内位置测算方法,通过融合环境辐射条件感知与信号特征分析,有效提升定位系统的鲁棒性。指纹离线采集阶段,构建双向融合时序感知模型(BGLA),创新结合双向长短期记忆网络(BiLSTM)与双向门控循环单元(BiGRU),分别捕捉辐射条件对RSSI的长、短期影响特征,并利用多头自注意力机制对特征进行深度融合,进而构建适应不同辐射条件的自适应指纹库;指纹在线匹配阶段,采用指数幂归一化方法,通过调节归一化参数,实现不同设备RSSI信号向统一量程的映射,以缓解硬件RSSI量程差异带来的干扰;此外,提出信源感知聚类算法,基于接入点(AP)质量筛选参考点(RP),并融合感知密度估计,抑制AP信号质量波动引发的RP在线匹配偏差。地下车库场景的实验结果显示,所提方案综合性能较优,在已知辐射条件下,平均定位精度较对比算法提升11.05%~25.38%;在未知辐射条件下,通过BGLA模型构建对应辐射条件的指纹库,从而平均定位精度优于对比算法27.55%~35.71%。

    Abstract:

    In underground garage environments, traditional RSSI-based fingerprint positioning is compromised by fluctuating radiation, multipath effects, and interference, leading to feature distortion and positioning errors. This paper proposes a dual-source sensing indoor positioning method that integrates environmental radiation perception with signal analysis to enhance system robustness. In the offline phase, a bidirectional fusion model combining BiLSTM and BiGRU is employed to capture both long-term and short-term radiation effects on RSSI. By leveraging multi-head self-attention, the model constructs an adaptive fingerprint database that accommodates varying radiation conditions. During the online matching phase, an exponential power normalization technique is used to map RSSI signals to a unified scale, mitigating hardware-related interference. An AP-aware clustering algorithm is introduced to select RPs based on AP signal quality and suppress matching deviations through density estimation. Experimental results in underground garages demonstrate the method′s strong performance. Under known radiation conditions, it achieves an average positioning accuracy improvement of 11.05%~25.38% over baseline methods. Under unknown radiation conditions, the BGLA-constructed fingerprint database enables it to outperform comparative approaches by 27.55%~35.71% in average positioning accuracy.

    参考文献
    相似文献
    引证文献
引用本文

吴岩,秦宁宁,宋书林,王艳.动态辐射条件下的双源感知室内位置测算方法[J].仪器仪表学报,2025,46(5):60-69

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码