电磁激励器结构的多目标优化设计与研究
DOI:
CSTR:
作者:
作者单位:

1.西南石油大学机电工程学院成都610500; 2.泸州职业技术学院智能制造与汽车工程学院泸州646000

作者简介:

通讯作者:

中图分类号:

TH878

基金项目:

四川省科技计划(MZGC20240136)、泸州市科技计划(2024JYJ073)、智能制造泸州市重点实验室开放基金(ZZ202405)项目资助


Multi-objective optimization design and study of electromagnetic exciter structure
Author:
Affiliation:

1.School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China; 2.College of Intelligent Manufacturing and Automotive Engineering, Luzhou Vocational & Technical College, Luzhou 646000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在阶梯式涡流热成像无损检测中,电磁激励器的结构对电磁场与传热场的分布和强度有重要影响。设计了一种集成优化系统并应用于方形电磁激励器结构中,以提高油气储罐或大口径管段体积缺陷的综合检测性能。首先,分析了激励器各结构参数变化对检测性能的影响,通过主成分分析选择累积影响显著的结构参数作为优化变量。采用客观赋权法对9个检测性能指标根据信息量给予权重,得到关于温升,均匀性与检测效率的3个综合指标。然后将由关键结构参数构造关于综合指标的离散优化空间映射到机器学习模型的连续优化空间。利用多目标粒子群算法获得帕累托前沿。最后,根据逼近理想解排序法对最优结构进行排序。优化后的结构与初始结构相比,温升、均匀度和效率指标分别提高了18.88%、2.46%和73.61%。此外,搭建了一套实验系统,验证了优化后的结构检测性能显著优于对比激励器,且能够用于检测钢板厚度为8 mm,径厚比>3的缺陷。通过集成优化系统设计的电磁激励器结构,显著提升了阶梯式涡流热成像检测性能,实验验证其对罐体材料内部体积缺陷高效检测能力,为油气储罐及大口径管段体积缺陷检测提供了有效解决方案。

    Abstract:

    In stepped eddy current thermography nondestructive testing, the structure of the electromagnetic exciter has an important influence on the distribution and strength of the electromagnetic field and heat transfer field. In this article, an integrated optimization system is designed and applied to the square electromagnetic exciter structure to improve the comprehensive detection performance of volumetric defects in oil and gas storage tanks or large-diameter pipe sections. First, the influence of the variation of each structural parameter of the exciter on the detection performance is analyzed, and the structural parameters with significant cumulative influence are selected as optimization variables by principal component analysis. The objective assignment method is used to give weights to nine detection performance indicators according to the amount of information, and three comprehensive indicators about temperature rise, uniformity and detection efficiency are obtained. Then the discrete optimization space constructed from the key structural parameters about the composite indexes is mapped to the continuous optimization space of the machine learning model. A multi-objective particle swarm algorithm is utilized to obtain the Pareto front. Finally, the optimal structures are ranked according to the approximate ideal solution ranking method. Compared with the initial structure, the optimized structure improves the temperature rise, uniformity, and efficiency indexes by 18.88%, 2.46%, and 73.61%, respectively. compared with the initial structure. In addition, a set of experimental systems is established to verify that the optimized structure has significantly better detection performance than the comparative exciter and can be used to detect defects in steel plates with a thickness of 8 mm and a diameter-to-thickness ratio greater than 3. By integrating and optimizing the electromagnetic exciter structure of the system design, it significantly improves the stepped eddy current thermography detection performance, and experimentally verifies its efficient detection capability of internal volume defects in tank materials, providing an effective solution for the detection of volumetric defects in oil and gas storage tanks and large-caliber pipeline segments.

    参考文献
    相似文献
    引证文献
引用本文

高源,张梁,梁政,郑庭.电磁激励器结构的多目标优化设计与研究[J].仪器仪表学报,2025,46(7):235-250

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码