基于三维曲线网络图优化的空间在轨成形桁架结构视觉检测方法
DOI:
CSTR:
作者:
作者单位:

1.天津大学精密测试技术及仪器全国重点实验室天津300072; 2.北京卫星制造厂有限公司北京100094

作者简介:

通讯作者:

中图分类号:

TH164TH7

基金项目:

国家自然科学基金(52127810)、天津市科技计划(24ZXZSSS00300)项目资助


Visual inspection method for space on-orbit forming truss structure based on 3D curve network graph optimization
Author:
Affiliation:

1.State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; 2.Beijing Satellite Factory Co., Ltd., Beijing 100094, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于空间在轨成形桁架具有特殊材质及复杂结构,传统视觉三维检测方法难以实现完整的模型重建,进而影响缺陷检测的准确性,故提出一种基于三维曲线网络图优化的桁架结构视觉检测方法,设计了旋转视觉扫描桁架三维检测系统, 完整重建三维结构并对其缺陷进行精确定位检测,从而解决了复杂空间桁架结构在轨制造检测难题。首先,通过图像曲线特征识别,结合基于距离标准与曲线一致性约束的曲线特征匹配方法,建立连续图像帧中弱特征细物体之间的对应关系;然后,基于三维曲线网络图结构优化原理,交替迭代更新相机姿态和目标结构,对桁架几何拓扑进行计算补全,并估计杆件直径;进一步,提出基于三维曲率分析的桁架缺陷检测方法,并结合二维图像校验,实现在轨成形桁架产品虚接、断点等典型缺陷精确识别分析。实验结果表明,所提方法相较于基于点特征匹配的传统三维重建方法,在复杂桁架纤细结构重建方面具有更高的质量和效率,几何参量和缺陷检测精度均优于0.3 mm,满足在轨制造现场检测需求,且不依赖外部标定和背景特征,为复杂空间结构在轨制造过程质量控制提供了重要的技术支撑。

    Abstract:

    Owing to the unique material properties and complex geometry of on-orbit formed space truss structures, traditional 3D visual inspection methods often fail to achieve complete model reconstruction, thereby compromising defect detection accuracy. This paper presents a visionbased detection method for truss structures that leverages 3D curve network graph optimization and designs a rotating visual scanning system for 3D inspection. This system enables comprehensive structural reconstruction and precise defect localization, addressing challenges in on-orbit manufacturing quality control. First, image curve feature recognition is combined with a curve feature matching approach that incorporates distance criteria and curve consistency constraints to establish correspondence between weak-textured slender objects across sequential image frames. Second, by leveraging the principle of 3D curve network graph structure optimization, the method iteratively updates the camera pose and the target structure, thereby computing and refining the geometric topology of the truss while estimating member diameters. Furthermore, a defect detection method based on 3D curvature analysis is introduced and complemented with 2D image validation, enabling accurate identification of typical defects such as virtual joints and breakpoints. Experimental results indicate that, compared to traditional point-feature-matching-based 3D reconstruction methods, the proposed approach achieves superior reconstruction quality and efficiency for slender truss structures. Both geometric parameters and defect detection accuracy exceed 0.3 mm, meeting the requirements for on-orbit manufacturing site inspections. Notably, this method does not rely on external calibration or background features, providing a robust technological foundation for quality control in the on-orbit manufacturing of complex space structures.

    参考文献
    相似文献
    引证文献
引用本文

陈展宏,李心宇,孙岩标,回天力,邾继贵.基于三维曲线网络图优化的空间在轨成形桁架结构视觉检测方法[J].仪器仪表学报,2025,46(7):126-138

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码