基于三维姿态估计的智能康复运动检测系统应用研究
DOI:
CSTR:
作者:
作者单位:

1.南通大学电气与自动化学院南通226019; 2.苏州市体育专业运动队管理中心苏州215000

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

江苏省研究生实践创新项目(KYCX25_3747)资助


Rehabilitation exercise detection method based on 3D human pose estimation
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Nantong University, Nantong 226019, China; 2.Suzhou Sports Professional Sports Team Management Center, Suzhou 215000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在康复运动场景中,运动输入通常是视频序列,基于主流的2D人体姿态估计方法和深度相机进行的伪3D方案无法对视频中的骨骼点测距,影响最终评估效果。为了解决这个问题,提出一种针对视频的序列到序列3D帧聚焦姿态识别方法用于康复评估。其目的是从最原始的二维噪声场景中直接提取更全面、更详细的三维坐标信息,并基于这些信息进行运动序列分析。该方法采用四支路流式变换器,能够捕获长序列时间与空间之间的交互关系,同时分别对原始2D输入进行时序与空间处理。这四支路信息通过可学习比例参数进行整合,并通过一个额外模块,结合空间编码器和增强型时间解码器获得最终输出。所提方法在Human 3.6M数据集上的表现优于最先进方法,平均关节位置误差仅为14.4 mm,三维姿态坐标误差最低,证明了所提主干架构能够有效处理更复杂的康复运动视频序列任务,同时在实际康复视频序列的对比实验也验证了本方法的有效性。此外,基于先进的人体姿态估计方法,研发了一种新颖的多维度智能康复运动评估分析系统,能够对人体各个关节120个动作进行运动指标估计,已进入临床验证阶段,并完成2 000余例病人测试,平均准确率93.2%。

    Abstract:

    In rehabilitation exercise scenarios, motion input is typically in the form of video sequences. However, pseudo-3D solutions based on mainstream 2D human pose estimation methods and depth cameras are incapable of accurately measuring distances between skeletal points within videos, thereby affecting the final assessment performance. To address this issue, this paper proposes a sequence-to-sequence 3D frame-focused pose recognition method tailored for rehabilitation evaluation. The goal is to directly extract more comprehensive and detailed 3D coordinate information from the original noisy 2D scenarios and conduct motion sequence analysis based on this data. The proposed method adopts a four-branch streaming transformer architecture that captures the spatiotemporal interactions across long sequences by independently modeling the temporal and spatial aspects of the raw 2D input. These four branches are integrated through learnable proportional parameters, and an additional module combining a spatial encoder with an enhanced temporal decoder is employed to generate the final output. Our method outperforms state-of-the-art approaches on the Human 3.6M dataset, achieving a mean per-joint position error (MPJPE) of only 14.4 mm, the lowest 3D pose coordinate error reported to date. This demonstrates that the proposed backbone architecture is effective in handling more complex rehabilitation motion video sequence tasks. Moreover, comparative experiments on real-world rehabilitation video sequences further validate the effectiveness of our approach. Based on this advanced human pose estimation method, we have developed a novel multi-dimensional intelligent rehabilitation exercise evaluation and analysis system, capable of estimating motion metrics for 120 joint actions. The system has entered the clinical validation phase and has been tested on over 2 000 patients, achieving an average accuracy of 93.2%.

    参考文献
    相似文献
    引证文献
引用本文

张堃,张鹏程,陈孝豪,张彬,华亮.基于三维姿态估计的智能康复运动检测系统应用研究[J].仪器仪表学报,2025,46(6):181-193

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码