基于多尺度特征融合网络的电阻点焊缺陷精确定位与分割方法
DOI:
CSTR:
作者:
作者单位:

天津大学精密测试技术及仪器全国重点实验室天津300072

作者简介:

通讯作者:

中图分类号:

TH164TH183

基金项目:

国家重点研发计划(2023YFB4707100)项目资助


Precise localization and segmentation method for resistance spot welding defects based on multi-scale feature fusion network
Author:
Affiliation:

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电阻点焊质量直接影响车身结构的稳定性和安全性,缺陷的像素级分割图对于精确分析缺陷形态和严重程度至关重要。针对传统的目标检测方法在处理细小缺陷时无法进行精确语义分割且分类精度较低的问题,提出了一种基于多尺度特征融合网络的电阻点焊缺陷精确定位与分割方法,通过跨层次特征连接与多尺度特征匹配,使网络在识别整体点焊特征的同时,能够捕捉细小缺陷特征,实现了大场景中缺陷位置的精确语义分割,并提高了电阻点焊区域的分类精度。设计了候选区域生成网络,融合低层次细节特征与高层次语义信息,设计了点焊区域定位损失函数,确保点焊区域的精准定位。随后,提出了缺陷分割与定位网络,结合ROI Align与多尺度特征匹配,构建正常焊点特征库,并设计异常评分计算公式,实现点焊区域的像素级异常评分。实验结果表明,方法相比传统目标检测模型,在小目标点焊分类精度上提升了25.35%,F1分数提升了14.81%。此外,所提方法能够生成高精度的像素级缺陷分割图,Pixel AUROC达到094,展现了优异的缺陷识别能力,同时在开源不同场景下电阻点焊数据集上的测试也取得了良好结果,F1分数达0.93,验证了模型的泛化能力。

    Abstract:

    The quality of resistance spot welding directly affects the structural stability and safety of automobile bodies. Pixel-level segmentation maps of welding defects are crucial for accurately analyzing defect morphology and severity. To address the limitations of traditional object detection methods in precisely segmenting small-scale defects and achieving high classification accuracy, this paper proposes a precise localization and segmentation method for RSW defects based on a multi-scale feature fusion network. By integrating cross-level feature connections and multi-scale feature matching, the network captures both global welding characteristics and fine-grained defect details, enabling accurate semantic segmentation of defects in large scenes and improving classification accuracy in RSW regions. A candidate region generation network is designed to fuse low-level detailed features with high-level semantic information, and a custom localization loss function is introduced to ensure accurate positioning of spot weld regions. Subsequently, a defect segmentation and localization network is proposed, which incorporates ROI Align and multi-scale feature matching to construct a normal feature bank for spot welds and formulates an anomaly scoring function for pixel-level anomaly scoring of weld regions. Experimental results show that, compared with traditional object detection models, the proposed method improves the classification accuracy for small RSW targets by 25.35% and enhances the F1 score by 14.81%. Moreover, it produces high-precision pixel-level segmentation maps, achieving a Pixel AUROC of 0.94, demonstrating excellent defect recognition capabilities. The method also achieves good performance on open-source RSW datasets from various industrial scenarios, with an F1 score of 0.93, verifying the generalization ability of the model.

    参考文献
    相似文献
    引证文献
引用本文

王俞霏,杜弘志,胡蕴博,孙岩标,邾继贵.基于多尺度特征融合网络的电阻点焊缺陷精确定位与分割方法[J].仪器仪表学报,2025,46(7):202-213

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码