一种基于ByteTrack的前视声呐多目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨工程大学智能科学与工程学院哈尔滨150001; 2.北京三快在线科技有限公司北京100190

作者简介:

通讯作者:

中图分类号:

TH741TP273

基金项目:

国家自然科学基金(42276187)项目资助


A multi-target tracking algorithm based on ByteTrack for forward-looking sonar
Author:
Affiliation:

1.College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; 2.Beijing Sankuai Online Technology Co., Ltd., Beijing 100190, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    前视声呐在水下远距离目标检测与跟踪中发挥着重要的作用。然而,前视声呐图像序列帧率较低、目标特征不清晰,容易出现目标丢失的问题。在使用前视声呐进行目标跟踪时,需要对声呐载体旋转和目标遮挡进行补偿,避免目标丢失。为解决以上问题,结合声呐图像序列的特征和目标特征,改进现有的跟踪算法。针对ByteTrack算法应用在声呐跟踪上容易出现目标丢失问题,结合前视声呐图像特征,改进关联方式,在第1关联提出了一种基于卡尔曼滤波的运动特征和目标外观特征结合的方式作相似性度量,提升了跟踪的准确性。针对前视声呐载体旋转导致目标运动过快的问题,利用声呐姿态数据对ByteTrack算法加入旋转补偿,提升了匹配的准确性;最后,通过相似性度量算法对比实验,证明了改进后的关联方式和目标外观特征结合的方式的优越性。对比了DeepSort、TransTrack和ByteTrack主流目标跟踪算法,改进后的模型跟踪准确度为76.8%,跟踪召回率为80.6%;改进后的ByteTrack与改进前的ByteTrack相比,跟踪精度提升了9.4%,召回率提升了10.8%,ID切换次数降低了46%。检测与跟踪融合实验表明,改进后的目标检测跟踪融合算法拥有更低的漏检率、误检率,更低的身份切换次数,更能适应前视声呐水下目标的检测和跟踪场景。

    Abstract:

    Forward looking sonar plays an important role in underwater long-distance target detection and tracking. However, forward-looking sonar image sequences suffer from low frame rates and unclear target features, which can lead to target loss. In addition, effective tracking requires compensating for sonar carrier rotation and handling target occlusion to prevent trajectory discontinuities. To solve the above problems, the characteristics of sonar image sequences and target features were combined to improve existing tracking algorithms in this paper. To mitigate target loss in sonar tracking of ByteTrack algorithm, combined with the features of forward-looking sonar images, an improved correlation method was proposed. In the first correlation, a similarity measurement method based on Kalman filter was proposed by combining motion features and target appearance features, which improved the accuracy of tracking. To address rapid apparent target motion caused by sonar carrier rotation, rotation compensation was added to the ByteTrack algorithm using sonar attitude data to improve the accuracy of matching; Finally, the superiority of the improved association method and the combination of target appearance features were demonstrated through comparative experiments using similarity measurement algorithms. Compared with mainstream target tracking algorithms such as DeepSort, TransTrack, and ByteTrack, the improved model achieved a tracking accuracy of 76.8% and a tracking recall rate of 80.6%. Compared with the original ByteTrack algorithm, the improved ByteTrack has improved tracking accuracy by 9.4%, recall by 10.8%, and ID switching frequency by 46%. The fusion experimental results of detection and tracking show that the improved target detection tracking fusion algorithm has lower miss rate, lower false alarm rate, lower identity switching times, making it well-suited for underwater target detection and tracking with forward-looking sonar.

    参考文献
    相似文献
    引证文献
引用本文

陈美龙,赵新华,叶秀芬.一种基于ByteTrack的前视声呐多目标跟踪算法[J].仪器仪表学报,2025,46(7):332-344

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码