基于HBF神经网络观测器的PMSM无模型预测电流控制
DOI:
CSTR:
作者:
作者单位:

山东理工大学电气与电子工程学院淄博255022

作者简介:

通讯作者:

中图分类号:

TM351TH39

基金项目:

国家自然科学基金项目(62076152)、山东省科技型中小企业创新能力提升工程项目(2024TSGC0291)资助


PMSM model-free based on HBF neural network observer predictive current control
Author:
Affiliation:

School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电机组变桨系统永磁同步电机(PMSM)在复杂运行环境中参数时变引发的模型失配难题,提出了一种融合超局部建模、HBF神经网络观测器以及改进双矢量调制的PMSM无模型预测电流控制(HBFMFPCC)方案。根据一阶超局部模型原理构建了PMSM无模型预测电流控制的预测模型,仅需使用电机的电流和电压等历史信息即可预测未来时刻的电流值,彻底摆脱对电机电阻、电感和磁链等参数的依赖,解决了传统模型预测电流控制(MPCC)依赖于精确电机参数的问题;设计了一种HBF神经网络观测器来对预测模型的集总误差进行快速辨识,采用决策树优化基函数中心与宽度,该观测器具有较高的辨识速度和适应性,能够有效提高预测模型的准确度;采用一种改进的双矢量最优占空比调制策略,从19组电压矢量组合中选择最优矢量作用于逆变器,并通过自适应时长分配抑制电流纹波,提高电流的跟踪性能。仿真和实验结果表明,在模拟极端参数失配的工况下,提出的HBFMFPCC策略相比MPCC策略能够使电流跟踪误差降低50%,谐波失真率降低28%;设计的HBF神经网络观测器能够使电流跟踪误差降低53%,谐波失真率降低55%;改进双矢量调制方法能够使电流跟踪误差降低24%,谐波失真率降低11%;该方案能够显著提高系统的鲁棒性且保证良好的电流跟踪性能。

    Abstract:

    Aiming at the problem of model mismatch caused by time-varying parameters of permanent magnet synchronous motor (PMSM) in wind turbine pitch system in complex operating environment, a model-free predictive current control (HBF-MFPCC) scheme for PMSMs, integrating ultra-local modeling, an HBF neural network observer, and an improved dual-vector modulation strategy, is proposed. A first-order ultra-local model is employed to construct the predictive model for the proposed model-free current control, enabling future current prediction based solely on historical current and voltage data.. The current value in the future can be predicted only by using the historical information such as current and voltage of the motor, and the dependence on the parameters such as resistance, inductance and flux linkage of the motor is eliminating the dependence entirely, which solves the problem that the traditional model predictive current control (MPCC) depends on accurate motor parameters. A HBF neural network observer is designed to quickly identify the lumped error of the prediction model. The decision tree is used to optimize the center and width of the basis function. The observer has high identification speed and adaptability, which significantly enhances the accuracy of the prediction model. An improved dual-vector optimal duty cycle modulation strategy is adopted. The optimal vector is selected from 19 possible voltage vector combinations to drive the inverter. Adaptive time allocation is then applied to suppress current ripple, thereby improving current tracking performance. The simulation and experimental results show that the proposed HBF-MFPCC strategy can reduce the current tracking error by 50 % and the harmonic distortion rate by 28 % compared with the MPCC strategy under the condition of simulating extreme parameter mismatch. The designed HBF neural network observer can reduce the current tracking error by 53 % and the harmonic distortion rate by 55 %. The improved double vector modulation method can reduce the current tracking error by 24 % and the harmonic distortion rate by 11 %. This scheme can significantly improve the robustness of the system and ensure good current tracking performance.

    参考文献
    相似文献
    引证文献
引用本文

马炳图,杜钦君,张婷,李伟强,刘家合.基于HBF神经网络观测器的PMSM无模型预测电流控制[J].仪器仪表学报,2025,46(8):376-386

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码