基于PXD-YOLO11s的陶瓷电路板缺陷检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.四川轻化工大学计算机科学与工程学院宜宾644000; 2.四川轻化工大学自动化与信息工程学院 宜宾644000; 3.智能感知与控制四川省重点实验室宜宾644000; 4.企业信息化与物联 网测控技术四川省高校重点实验室宜宾644000

作者简介:

通讯作者:

中图分类号:

TP391TH862

基金项目:

企业信息化与物联网测控技术四川省高校重点实验室开放基金(2024WZY01)、四川轻化工大学科研创新团队计划(SUSE652A011)、四川轻化工大学研究生创新基金(Y2024119)项目资助


Research on ceramic circuit board defect detection method based on PXD-YOLO11s
Author:
Affiliation:

1.School of Computer Science and Engineering, Sichuan University of Science & Engineering, Yibin 644000, China; 2.School of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644000, China; 3.Intelligent Perception and Control Key Laboratory of Sichuan Province, Yibin 644000, China; 4.Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Yibin 644000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业现场陶瓷电路板(CPCB)缺陷检测中存在的数据集有限、缺陷尺度微小、背景复杂等问题,提出了一种基于PXD-YOLO11s的陶瓷电路板缺陷检测方法。首先构建高质量CPCB缺陷专用数据集,系统设计涵盖深度划痕、砂眼、断路等14类典型缺陷的采集方案,采用工业相机和专业光学设备采集高清缺陷图像,并通过图像预处理与数据增强策略提升样本多样性与泛化能力。其次在YOLO11s网络架构基础上进行改进:引入并行特征提取模块(ParNet),通过多分支卷积结构捕获不同尺度的特征信息,同时优化卷积结构以提升特征提取效率;增加专用小目标检测层(XsHead),强化对微小缺陷的识别能力;后处理阶段引入SoftNMS机制,通过置信度衰减而非直接抑制的方式处理重叠预测框,有效提升对密集排列缺陷的检测能力;最后调整损失函数,采用DIoU损失替代传统的CIoU损失,使模型更加关注预测框与真实框中心点距离和宽高比例,从而提升复杂背景下的目标定位精度。实验结果表明,在自建CPCB数据集上,改进后的PXD-YOLO11s模型在mAP50和mAP(50~95)指标上较原YOLO11s分别提升了5.2%和8.5%。此外,该方法在公开PKU-Market-PCB数据集上的检测性能优于Faster R-CNN、YOLOv5s等典型算法,展现出其良好的泛化能力与特征提取的有效性。所提出的方法显著提升了陶瓷电路板缺陷检测精度,为工业缺陷智能检测提供了高效、可靠的解决方案。

    Abstract:

    To address the issues of limited datasets, tiny defect scales, and complex backgrounds in defect detection for CPCB in industrial settings, a CPCB defect detection method based on PXD-YOLO11s is proposed. Firstly, a high-quality dedicated dataset for CPCB defects is constructed, with a systematically designed acquisition scheme covering 14 types of typical defects such as deep scratches, sand holes, and open circuits. High-resolution defect images are captured using industrial cameras and professional optical equipment, and image preprocessing and data augmentation strategies are employed to enhance sample diversity and generalization. Secondly, improvements are made based on the YOLO11s network architecture: A parallel feature extraction module (ParNet) is introduced, which captures multi-scale feature information through a multi-branch convolutional structure while optimizing the convolution configuration to improve feature extraction efficiency; A dedicated small target detection layer (XsHead) is added to strengthen the recognition capability for tiny defects; the Soft-NMS mechanism is integrated in the post-processing stage to handle overlapping prediction boxes through confidence decay instead of direct suppression, effectively enhancing the detection performance for densely arranged defects; Finally, the loss function is adjusted by adopting DIoU loss to replace the traditional CIoU loss, enabling the model to focus more on the center distance and aspect ratio between prediction boxes and ground truth boxes, thereby improving target localization accuracy in complex backgrounds. Experimental results show that on the self-built CPCB dataset, the improved PXD-YOLO11s model achieves 5.2% and 8.5% increases in mAP50 and mAP(50~95) compared with the original YOLO11s, respectively. In addition, this method outperforms typical algorithms such as Faster R-CNN and YOLOv5s on the public PKU-Market-PCB dataset, demonstrating its excellent generalization ability and effective feature extraction performance. The proposed method significantly improves the CPCB defect detection accuracy and provides an efficient and reliable solution for intelligent industrial defect detection.

    参考文献
    相似文献
    引证文献
引用本文

杨思念,曹立佳,郭川东,刘艳菊,任帅.基于PXD-YOLO11s的陶瓷电路板缺陷检测方法研究[J].仪器仪表学报,2025,46(7):307-318

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码