微波氨气传感器频率漂移温湿度补偿方法
DOI:
CSTR:
作者:
作者单位:

1.安徽农业大学信息与人工智能学院合肥230036; 2.武汉大学电气与自动化学院武汉430072; 3.东北大学信息科学与工程学院沈阳110819

作者简介:

通讯作者:

中图分类号:

TP216.1TH89

基金项目:

国家自然科学基金(62303018)、合肥市自然科学基金(HZR2413)项目资助


A temperature and humidity compensation method for microwave ammonia gas sensors experiencing frequency drift
Author:
Affiliation:

1.School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China; 2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China; 3.School of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    畜禽养殖、农产品品质检测以及工业环境等重点行业对有害气体的高精度检测提出了迫切需求。然而,室内环境中温湿度的波动会导致气体传感器出现频率漂移现象,进而影响气体检测精度。针对此类问题,通过电磁仿真分析微带谐振器电磁损耗特性,确定气敏材料最佳涂覆位置,进而提升微波传感器对氨气响应灵敏度,进一步分析微波传感器辐射增益与氨气浓度之间的相关性,结合无线功率传输模型,构建了无线氨气检测系统。基于射频识别检测原理,搭建氨气测试系统,开展了不同温湿度条件下传感器测试实验,分析了传感器输出性能。引入反向传输神经网络温湿度补偿算法,并结合皮尔森相关性分析,对不同温湿度条件下传感器的频率漂移进行分析与补偿校正。试验结果表明,温湿度波动对微波氨气传感器频率漂移具有显著影响,补偿后频率漂移幅度减少了14 MHz,误差浓度低至6×10-8,相对误差仅为2%,气体检测精度提升了31.11%。相较于基于反向传输神经网络温度补偿模型和支持向量机温湿度补偿模型,具有更好的补偿效果。综上所述,该研究有效提升了微波氨气传感器在复杂温湿度环境中的检测精度,为高精度有害气体检测提供了更有效的测量支撑。

    Abstract:

    High-precision detection of harmful gases is urgently required in key sectors, such as livestock farming, agricultural product quality monitoring, and industrial environmental management. However, fluctuations in indoor ambient temperature and humidity can lead to frequency drift in gas sensors, thereby affecting detection accuracy. To address this issue, electromagnetic simulations are conducted to analyze the electromagnetic loss characteristics of the microstrip resonator, thereby identifying the optimal coating position for the gas-sensitive material and enhancing the microwave sensor′s sensitivity to ammonia. Furthermore, the correlation between the sensor′s radiation gain and ammonia concentration. A wireless ammonia detection system based on a wireless power transmission model is constructed. By utilizing the detection principles of radio frequency identification, an experimental platform is developed to test sensor performance under various temperature and humidity conditions. The back propagation (BP) neural network temperature-humidity compensation algorithm is introduced to the model, analyze, and correct the frequency drift caused by environmental variations, combined with Pearson correlation analysis. Experimental results indicate that temperature and humidity significantly affect the microwave ammonia sensor′s frequency stability. After compensation, the frequency drift amplitude is reduced by 14 MHz, the concentration error is decreased to 0.06×10-6, and the relative error is limited to 2%, resulting in a 31.11% improvement in gas detection accuracy. Compared with the temperature compensation model of the BP network or the temperature-humidity compensation model of the support vector machine, the proposed method demonstrates superior performance. In conclusion, this research effectively enhances the detection accuracy of microwave ammonia gas sensors under complex temperature and humidity environmental conditions. It provides a more robust technical foundation for high-precision harmful gas monitoring.

    参考文献
    相似文献
    引证文献
引用本文

时国龙,胡国平,何怡刚,孟凡利.微波氨气传感器频率漂移温湿度补偿方法[J].仪器仪表学报,2025,46(5):1-10

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码