PUDet:基于生成上采样网络的3D目标检测方法
DOI:
CSTR:
作者:
作者单位:

北京理工大学集成电路与电子学院北京100081

作者简介:

通讯作者:

中图分类号:

TH744TP391

基金项目:

启元实验室创新基金(JCJQ-LA-001-077)项目资助


PUDet: Advancing 3D object detection with generative upsampling networks
Author:
Affiliation:

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于LiDAR的3D目标检测在性能上表现出色,但前景目标点云分布不均匀,往往削弱了其几何特征的表达。同时,远距离目标通常点数稀少,进一步影响检测效果。为此,提出了一种创新框架PUDet,将生成模型融入判别式检测器中。利用带有先验知识的点云上采样网络,增强前景目标的几何细节,从而帮助检测器实现更精确的预测。PUDet包含2个关键模块:针对近距离目标的LDEM,通过优化点云分布来提升检测效果并降低计算成本;针对远距离目标的DDAM,通过增加点密度更清晰地勾勒物体轮廓。为了验证几何轮廓的优化效果,在增强前后分别对近距离和远距离目标的均匀损失进行了实验对比,证明了LDEM和DDAM的有效性。本研究还通过目标点云的注意力图展示了模型对关键区域的关注程度,从而进一步分析了精度提升的内在机制。在KITTI测试集上的实验结果表明,PUDet将基线模型CT3D的mAP提升了1.84个百分点。本研究为3D目标检测领域提供了一种新的方法,并为自动驾驶等应用场景中的精确目标识别和处理提供了更准确、可靠的支持。

    Abstract:

    LiDAR-based 3D object detection achieves superior performance. However, the unevenly distributed point clouds on foreground objects can weaken their geometric representation. Meanwhile, far-away objects typically have very few points, which further impairs detection performance. In this article, a novel framework PUDet is presented, which integrates generative models into discriminative detectors. A point cloud upsampling network is leveraged with prior knowledge to enhance the geometric details of foreground objects, aiding the detector in achieving more accurate prediction. PUDet incorporates two key modules: LDEM for nearby objects, which optimizes point distribution while minimizing computational costs, and DDAM for distant objects, which increases point density to better delineate object contours. To evaluate the optimization of geometric contours, the uniform loss of close and long-distance targets before and after enhancement is experimentally compared, showing the efficacy of LDEM and DDAM. This article also displays the attention maps on object point clouds, explaining the observed accuracy gains. Experimental results on the KITTI testing set show that the proposed framework improves the baseline CT3D by 1.84 mAP, confirming the effectiveness of PUDet. This work introduces a novel approach to 3D object detection, enhancing precision and reliability in object recognition for applications like autonomous driving.

    参考文献
    相似文献
    引证文献
引用本文

许丽梅,周治国,周学华. PUDet:基于生成上采样网络的3D目标检测方法[J].仪器仪表学报,2025,46(8):228-243

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码