物理知识引导的卷积神经网络故障诊断预测方法
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学机电工程学院北京102206; 2.北京龙科数智科技有限公司北京101304

作者简介:

通讯作者:

中图分类号:

TH165TH17

基金项目:


Physical-guided convolutional neural network model for fault diagnosis
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 102206, China; 2.Beijing Longke Intelligence Technology Co.,Ltd., Beijing 101304, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卷积神经网络预测滚动轴承故障中的捷径学习问题进行深入研究,并提出了一种基于物理知识引导的卷积神经网络故障诊断预测模型。采用滚动轴承数据集,对卷积神经网络在滚动轴承故障诊断模型的训练过程中出现的捷径学习问题进行了分析,揭示了捷径学习现象的存在:即使卷积网络在特定的故障数据集上达到了90%以上的精度,由于捷径学习的存在,卷积网络模型并没有学习到正确的与故障理论匹配的故障特征,而是学习到了错误的特征频率或频谱图中的波形形态。对故障诊断中捷径学习现象的产生机制进行了分析,揭示捷径学习的产生机制和决策规则:卷积神经网络的捷径学习行为主要源于数据集中由背景噪声、装配等因素导致的捷径机会,模型倾向学习简单特征组合,以及综合误差导致的数据统计偏差。由于故障数据集本身无法对深度神经网络模型的学习产生足够的约束,基于滚动轴承特征频率,设计了基于轴承故障特征的敏感频带,通过带通滤波器生成物理知识数据,构建物理引导信息,输入卷积神经网络模型,引导模型学习正确的故障特征。经实验验证,基于物理知识引导的卷积神经网络能够有效避免捷径学习问题,准确提取故障核心特征,提高故障诊断和预测准确度,提升了卷积网络故障诊断模型的可信度,在航空航天等领域高端装备故障诊断中具有应用前景。

    Abstract:

    This paper conducts an in-depth study on the problem of shortcut learning in convolutional neural networks for predicting rolling bearing faults, and proposes a physics-guided convolutional neural network model for fault diagnosis and prediction. Using rolling bearing datasets, this study analyzes the shortcut learning problem that occurs during the training of CNN-based rolling bearing fault diagnosis models, and reveals the existence of the shortcut learning phenomenon: even though the convolutional network achieves an accuracy of over 90% on a specific fault dataset, due to the presence of shortcut learning, the model fails to learn the correct fault features that match the fault theory. Instead, it learns incorrect characteristic frequencies or waveform patterns in the spectrogram. The study also analyzes the generation mechanism of the shortcut learning phenomenon in fault diagnosis, and reveals the generation mechanism. Shortcut learning behavior in convolutional neural networks mainly arises from shortcut opportunities in the dataset, caused by factors such as background noise and assembly, the model's tendency to learn simple feature combinations, and data statistical biases caused by comprehensive errors. Since the fault dataset itself cannot sufficiently constrain the learning of deep neural network models, this paper designs sensitive frequency bands based on bearing fault characteristics according to the characteristic frequencies of rolling bearings. It generates physics-guided data through band-pass filters, constructs physics-guided information, and inputs it into the convolutional neural network model to guide the model to learn correct fault features. Experimental verification shows that the physics-guided convolutional neural network can effectively avoid the shortcut learning problem, accurately extract core fault features, improve the accuracy of fault diagnosis and prediction, and enhance the credibility of the convolutional network-based fault diagnosis model. It has application prospects in fault diagnosis of high-end equipment in fields such as aerospace.

    参考文献
    相似文献
    引证文献
引用本文

米洁,马超,周海龙,甄真,张健.物理知识引导的卷积神经网络故障诊断预测方法[J].仪器仪表学报,2025,46(8):19-32

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码