自适应蒙特卡洛法用于机器人标定定位精度可靠性分析研究
DOI:
CSTR:
作者:
作者单位:

1.南京工程学院自动化学院南京211167; 2.东南大学仪器科学与工程学院南京211196; 3.常州市检验检测标准化认证研究院常州213164

作者简介:

通讯作者:

中图分类号:

TP242.2TH17

基金项目:


Analysis and study on the positioning accuracy reliability of calibrated robots based on adaptive Monte Carlo simulation
Author:
Affiliation:

1.Automation Department, Nanjing Institute of technology, Nanjing 211167, China; 2.School of Instrument Science and Engineering, Southeast University, Nanjing 211196, China; 3.Changzhou Institute of Inspection Testing Standardization and Certification, Changzhou 213164, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    几何参数标定是提升工业机器人末端定位精度的有效方法,定位精度是否精确可靠将直接影响机器人作业精度、产品质量及生产安全,开展已标定机器人末端定位精度可靠性分析意义重大。首先,建立了机器人MDH模型,采用轴线测量法对机器人几何参数进行标定。其次,对机器人末端定位精度可靠性分析计算,提出了基于自适应蒙特卡洛法的机器人定位精度评估方法。最后,采用Leica AT960激光跟踪仪对Staubli TX60机器人在测量重复性、关节运动范围、关节运动步长、关节运动速度等不确定因素影响下进行标定实验,实验结果表明:采用轴线测量法对机器人几何参数标定,定位精度提高了约22.9%,证实了该方法标定机器人几何参数的有效性。同时,在不同测量因素影响下采用自适应蒙特卡洛法及经典蒙特卡洛法对已标定机器人定位精度可靠度计算,结果表明:关节运动范围、关节运动速度和测量重复性对标定机器人定位精度可靠性影响较大。当数值容差取值为0.01及0.02时,采用AMCS获得的定位精度可靠性概率密度函数曲线的平均值、方差、偏度和峰度与由MCS获到结果的最大相对误差分别为1.1%及1.9%,但运算时间约为MCS的1/4及1/9。证实了采用提出的AMCS对机器人定位精度可靠性分析时能够通过设定不同的数值容差来控制算法的收敛速度和精度,适于在实际工程问题的可靠性分析中推广应用。

    Abstract:

    Geometric parameter calibration is an effective method to improve the end-effector positioning accuracy of industrial robots, which directly affects operational precision, product quality, and production safety. It is significant to analysis and study on the positioning accuracy reliability of calibrated robots. Firstly, an MDH model is established and the axis measurement method is developed to calibrate the robot geometric parameters in this paper. Secondly, the positioning accuracy reliability is analyzed and formulated, and robot positioning accuracy reliability analysis method based on AMCS is proposed. Finally, calibration experiments are conducted on Staubli TX60 robot using Leica AT960 laser tracker under uncertain factors affected by measurement repeatability, joint motion ranges, joint motion step sizes, joint motion velocities, etc. Experimental results demonstrate that the proposed AMM improves the robot′s positioning accuracy by approximately 22.9%, verifying its effectiveness for geometric parameter calibration. In the meantime, AMCS and MCS are used to calculate the positioning accuracy reliability of calibrated robot under the influence of different measurement factors. The results show that joint motion range, joint motion speed, and measurement repeatability significantly impact the reliability of robot positioning accuracy. When the numerical tolerance values are set to 0.01 and 0.02, he probability distribution function (PDF) characteristics of positioning accuracy reliability obtained by AMCS exhibit maximum relative errors of only 1.1% and 1.9%, respectively, compared with MCS, while computation times are reduced to about 1/4 and 1/9 of MCS. It has been confirmed that the proposed AMCS can control the convergence speed and accuracy of the algorithm by setting different numerical tolerances, providing an efficient and reliable tool for analyzing the positioning accuracy reliability of calibrated robots. It is suitable for practical engineering applications in robot calibration and reliability evaluation.

    参考文献
    相似文献
    引证文献
引用本文

温秀兰,李国成,宋爱国,崔伟祥,王直荣.自适应蒙特卡洛法用于机器人标定定位精度可靠性分析研究[J].仪器仪表学报,2025,46(8):341-350

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码