基于个性化联邦域泛化框架的旋转机械故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨工业大学电子与信息工程学院哈尔滨150001; 2.哈尔滨理工大学测控技术与通信工程学院哈尔滨150080

作者简介:

通讯作者:

中图分类号:

TH165.3

基金项目:

国家自然科学基金(62403164)、中国博士后科学基金(2024M754184)项目资助


A personalized federated domain generalization framework based rotating machinery fault diagnosis method
Author:
Affiliation:

1.School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; 2.School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在智慧工厂加速落地的背景下,尽管分布式工业环境中各企业及工厂管理的相似旋转机械设备具有潜在的协同诊断价值,但受数据隐私保护要求无法进行共享,同时运行工况差异导致采集的数据呈现非独立同分布特性,严重制约不同客户端高效诊断模型在变工况场景中的泛化能力。为应对这些挑战,提出了一种基于个性化联邦域泛化框架的旋转机械故障诊断方法,在不共享本地数据的前提下,通过端间协同通信与本地个性化更新的交替对抗优化,有效提升边端诊断模型的泛化性与鲁棒性。其中,诊断模型基于隐态卷积网络构建,采用输入驱动的特征自适应方式实现灵活建模。在端间协同通信阶段,以公开数据集为媒介引导边端模型在共享语义空间中知识迁移,并引入结果一致性约束提升通信效率。在本地更新阶段,为防止对本地知识的遗忘,结合本地性能约束与自蒸馏机制,引导个性化保护下的模型优化,确保边端模型的本地诊断稳定性。在华中科技大学轴承数据集与机械综合诊断平台轴承数据集上进行实验验证,所提方法在两个数据集上的全局工况平均准确率分别为88.96%与92.33%,整体优于多种先进方法。该方法在提升边端模型跨域泛化能力的同时,保持了其稳定可靠的本地诊断性能。

    Abstract:

    In the backdrop of smart factory deployment, while similar rotating machinery managed by different enterprises holds potential for collaborative diagnosis, data privacy regulations prevent sharing. Additionally, operating condition differences result in non-independent and identically distributed data, limiting the generalization ability of diagnosis models across varying conditions. To tackle these challenges, this article proposes a personalized federated domain generalization framework. Without sharing local data, it enhances the generalization and robustness of edge-end diagnosis models through alternating adversarial optimization of inter-device collaboration and local personalized updates. The diagnosis model, built on the latent convolutional network, leverages input-driven feature adaptation for dynamic representation. During collaboration, publicly available datasets facilitate knowledge transfer in a shared space, while consistency constraints improve communication efficiency. In the local update phase, performance constraints and self-distillation preserve local knowledge, ensuring stable classification. Experiments on the Huazhong University of Science and Technology bearing dataset and the Mechanical Comprehensive Diagnosis Platform bearing dataset show that the proposed method achieves average accuracies of 88.96% and 92.33% under global operating conditions, respectively, outperforming several advanced approaches. Edge-end models optimized by the proposed approach improve cross-domain generalization while maintaining reliable local diagnosis performance.

    参考文献
    相似文献
    引证文献
引用本文

李晔,杨京礼,高天宇,陈寅生,尹双艳.基于个性化联邦域泛化框架的旋转机械故障诊断方法[J].仪器仪表学报,2025,46(8):75-86

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码