MFSF-DETR:一种基于多尺度特征移位融合的PCB缺陷与元件检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院南京210044; 2.无锡学院自动化学院无锡214105

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

国家自然科学基金项目(42175157)、江苏省高等学校基础科学研究面上项目(23KJB520036)、无锡市科技发展资金项目(K20231003)资助


MFSF-DETR: A PCB defect and component detection algorithm based on multi-scale feature shift fusion
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Science& Technology, Nanjing 210044, China; 2.School of Automation, Wuxi University,Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电子产品向高性能、小型化方向发展,印刷电路板(PCB)作为电子系统的核心载体,其设计与制造日趋复杂,元件排列更加紧密,结构也更加精细,从而对元件检测与缺陷检测提出了更高的要求。虽然以YOLO为代表的基于卷积神经网络的目标检测模型已获得大量研究,但这些模型只针对单一的缺陷或元件检测场景进行设计,且在小目标和密集场景的检测上效果有限,而RT-DETR的出现使得基于Transformer的端到端检测模型在实时检测领域有了出色的表现。为此,在RT-DETR模型基础上,针对PCB场景提出了一种基于Transformer的端到端实时目标检测模型MFSF-DETR。首先,采用Faster-CGLU Block替换主干网络中的Block层,细化通道注意力机制,引入了纠缠Transformer模块(ETB)整合频域与空间域,丰富深层语义。然后,设计了自适应加权跨尺度特征融合网络(RAWCFF)代替了基于CNN的跨尺度特征融合网络(CCFF),并与跨尺度特征移位融合网络(CFSF)组成新的特征融合编码器,实现邻层特征与非邻层特征的深度交互。最后,分别使用PCB缺陷数据集DsPCBSD+与PKU-Market-PCB、PCB元件数据集PCB_WACV、PCB与无人机数据集VisDrone2019评估提出的模型在PCB场景下的检测效果与泛化能力。实验结果表明,MFSF-DETR模型在缺陷与元件检测上达到了85.6%、98.1%与89.9%的最高精度,相比基线模型提高3.1%、1.0%与3.8%,同时FPS指标也达到了120.2、57.1与71.8,实现了PCB背景下的高效、高精度检测。

    Abstract:

    With the development of electronic products in the direction of high performance and miniaturization, printed circuit boards (PCBs), as the core carrier of electronic systems, are becoming more and more complex in design and manufacturing, with more closely arranged components and a finer structure, which puts forward higher requirements for component detection and defect detection. Although the target detection models based on convolutional neural networks represented by YOLO have received a lot of research, these models are only designed for a single defect or component detection scenario, and have a limited effect on the detection of small targets and dense scenarios. The emergence of RT-DETR has enabled Transformer-based end-to-end detection models to perform excellently in real-time detection. Therefore, based on the RT-DETR model, this article proposes an end-to-end real-time target detection model MFSF-DETR, based on a Transformer for PCB scenarios. Firstly, the Faster-CGLU Block is used to replace the Block layer in the backbone network, the channel attention mechanism is refined, and the entanglement transformer block (ETB) is introduced to integrate the frequency domain with the spatial domain to enrich the deep semantics. Then, the rep adaptive weighted cross-scale feature fusion (RAWCFF) is designed to replace the CNN-based cross-scale feature fusion and form a new feature fusion encoder with the cross-scale feature shift fusion (CFSF)to realize the deep interaction between neighboring and non-neighboring features. Finally, the proposed model is evaluated using the PCB defect dataset DsPCBSD+, the PKU-Market-PCB dataset, the PCB component dataset PCB_WACV, and the PCB and drone dataset VisDrone2019 to assess its detection performance and generalization ability in PCB scenarios. The experimental results show that the MFSF-DETR model achieved the highest accuracy of 85.6%, 98.1%, and 89.9% in defect and component detection, respectively, which is 3.1%, 1.0%, and 3.8% higher than the baseline model. Meanwhile, the FPS indicators also reached 120.2, 57.1, and 71.8, respectively, achieving efficient and high-precision detection in the PCB background.

    参考文献
    相似文献
    引证文献
引用本文

张永宏,许鑫豪,尹贺峰,李子奇. MFSF-DETR:一种基于多尺度特征移位融合的PCB缺陷与元件检测算法[J].仪器仪表学报,2025,46(8):266-285

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码