基于视觉语义约束的激光雷达大目标尺寸测量方法
DOI:
CSTR:
作者:
作者单位:

1.湖南大学电气与信息工程学院长沙410082; 2.湖南大学深圳研究院深圳518000

作者简介:

通讯作者:

中图分类号:

TH721TH701

基金项目:

湖南省自然科学基金重大项目(2021JC0004)、湖南省科技创新领军人才项目(2023RC1039)资助


A large target size measurement method of LiDAR based on visual semantic constraints
Author:
Affiliation:

1.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2.Shenzhen Research Institute, Hunan University, Shenzhen 518000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单帧视角数据难以反映大尺寸目标的完整轮廓从而导致尺寸测量受限的问题,以汽车为大目标测量研究对象提出了基于视觉语义约束的激光雷达大目标尺寸测量方法。该方法首先通过联合标定和时间戳最近邻匹配实现激光雷达、相机和惯性测量单元数据的时空同步;然后移动小车获取整个目标3个维度上的信息,利用同时定位与建图技术实现被测目标轮廓重建,并且在该模块通过基于地面的残差优化和回环检测框架提升算法精度;之后对点云去噪后使用地面分割算法分割地面点与非地面点,并采取直通滤波保证分割效果,与此同时使用目标检测算法获取图像中目标的类别和位置信息;其次通过自适应阈值点云聚类方法,将不同点云簇中心进行视觉投影,根据视觉目标检测结果定位目标对应点云;最后,设计了一种轮廓拟合算法完成目标点云的轮廓拟合,再利用三维框拟合算法实现目标的尺寸计算。实验结果表明,对于汽车这类尺寸较大的物体,提出的方法在有较多车辆的停车场, 车辆长度的最大误差<1.97%、平均误差<0.82%,宽度的最大误差<3.26%、平均误差<2.08%,高度的最大误差<3.99%、平均误差<1.99%,具有良好的工程应用前景。

    Abstract:

    To address the issue that single-frame perspective data struggle to depict the complete contour of large-scale targets, thereby limiting size measurement, this article proposed a large-target size measurement method of LiDAR based on visual semantic constraints, with automobiles as the research object for large-target measurement. Firstly, this method achieves spatio-temporal synchronization of LiDAR, camera, and inertial measurement unit data through joint calibration and timestamp nearest-neighbor matching. Subsequently, a mobile cart is used to acquire information about the entire target in three dimensions. The simultaneous localization and mapping technology is employed to reconstruct the contour of the measured target. In this module, the algorithm′s accuracy is enhanced through a ground-based residual optimization and loop closure detection framework. After denoising the point cloud, a ground segmentation algorithm is used to separate ground points from non-ground points, and a pass-through filter is applied to ensure the segmentation effect. Meanwhile, a target detection algorithm is utilized to obtain the category and position information of the target in the image. Next, through an adaptive threshold point cloud clustering method, the centers of different point cloud clusters are visually projected, and the point cloud corresponding to the target is located according to the visual target detection results. Finally, a contour fitting algorithm is designed to complete the contour fitting of the target point cloud. Then, a three-dimensional box fitting algorithm is used to calculate the target′s size. Experimental results show that for large-sized objects such as automobiles. In a parking lot with a large number of vehicles, the proposed method yields a maximum error and an average error of less than 1.97% and 0.82% respectively for vehicle length, less than 3.26% and 2.08% respectively for width, and less than 3.99% and 1.99% respectively for height, demonstrating promising prospects for engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

何赟泽,郭猜,郭隆强,邓堡元,王耀南.基于视觉语义约束的激光雷达大目标尺寸测量方法[J].仪器仪表学报,2025,46(8):244-254

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码