输入迟滞与全状态约束下线控转向系统自适应模糊固定时间容错控制
DOI:
CSTR:
作者:
作者单位:

合肥工业大学电气与自动化工程学院合肥230009

作者简介:

通讯作者:

中图分类号:

TH165+.3

基金项目:

国家自然科学基金(62173119)项目资助


Adaptive fuzzy fixed-time fault-tolerant control for steer-by-wire system with input hysteresis and full-state constraints
Author:
Affiliation:

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对具有执行器故障、输入迟滞以及全状态约束的线控转向系统,提出了一种自适应模糊固定时间容错控制方法。首先,建立了综合考虑执行器故障与输入迟滞的线控转向系统动力学模型,其中输入迟滞由转向电机电磁特性、机械传动间隙和传感器信号处理延时等原因引起,采用Backlash模型描述;执行器故障通过有效因子和偏置故障建模,反映转向电机性能退化现象。接着,基于反步控制理论、模糊逻辑系统以及自适应技术,设计执行器故障和输入迟滞的补偿方法,其中模糊逻辑系统用于逼近系统中的未知非线性项,且自适应律设计仅需对单一全局参数进行实时更新,有效降低计算复杂度。为了确保系统状态始终处于预设约束边界内,引入障碍Lyapunov函数,将前轮转角及其变化率的约束条件融入控制律设计,从安全性、执行器可实现性和驾驶舒适性等角度进行分析。在此基础上,构建固定时间控制器,保证系统跟踪误差在固定时间内收敛至有界紧集,从而有效提升复杂因素影响下闭环系统的控制精度与可靠性。实验结果表明,所提方法在双移线和急转弯两种经典工况以及低附着路面极端工况下均未发生状态越界,且平均最大误差和平均均方根误差分别为0.038和0.006 rad,明显优于现有文献中其他方法。

    Abstract:

    In this article, an adaptive fuzzy fixed-time fault-tolerant control is developed for a steer-by-wire system with actuator fault, input hysteresis, and full-state constraints. Firstly, a dynamic model of the steer-by-wire system considering actuator fault input hysteresis is formulated. The input hysteresis, caused by factors such as the electromagnetic characteristics of the steering motor, mechanical transmission clearance and the delay in sensor signal processing, is characterized using a backlash model. Actuator faults are modeled by incorporating effectiveness factors and bias faults, which reflect the performance degradation and deviation of the steering motor. Then, based on backstepping control theory, fuzzy logic system, and adaptive technology, the compensation method for actuator fault and input hysteresis is designed. In this method, the fuzzy logic system is employed to approximate the unknown nonlinearities in the system, while the adaptive law is designed to update only a single global parameter in real time, thereby effectively reducing computational complexity. To ensure that the system states always remain within predefined constraint boundaries, the barrier Lyapunov functions are introduced to incorporate the constraint conditions of the front wheel angle and its rate of change into the control law design. The method is then analyzed from the perspectives of safety, actuator feasibility, and driving comfort. On this basis, a fixed-time controller is constructed to ensure that the system tracking error converges to a bounded compact set within a fixed time, thereby effectively improving the control accuracy and reliability of the closed-loop system under the influence of complex factors. The experimental results show that the states of the proposed method do not exceed the bounds under both classic scenarios, including double lane change and sharp turn, as well as extreme conditions on a low adhesion road surface. Furthermore, the average maximum error and average root mean square error are 0.038 and 0.006 rad, respectively, which are obviously superior to other methods in existing literature.

    参考文献
    相似文献
    引证文献
引用本文

郁明,曾庆王,朱敏.输入迟滞与全状态约束下线控转向系统自适应模糊固定时间容错控制[J].仪器仪表学报,2025,46(8):351-361

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码