基于加权双域稀疏分解模型的编码器信号特征提取及其行星齿轮箱故障诊断应用
DOI:
CSTR:
作者:
作者单位:

1.南通理工学院汽车工程学院南通226002; 2.苏州大学轨道交通学院苏州215131

作者简介:

通讯作者:

中图分类号:

TH165+.3TH133.33

基金项目:

国家自然科学基金(52205119,52172406)、高端装备机械传动全国重点实验室开放基金(SKLMT-MSKFKT-202415)、中国博士后科学基金(2025M771322)项目资助


Weighted bi-domain sparse decomposition model for feature extraction of encoder signals and its application in planetary gearbox fault diagnosis
Author:
Affiliation:

1.School of Automotive Engineering, Nantong Institute of Technology, Nantong 226002, China; 2.School of Rail Transportation, Soochow University, Suzhou 215131, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    齿轮箱作为机械设备中的关键传动部件,常年在严苛环境和重载条件下工作,易发生损伤。近年来,内置编码器信号因其成本低廉、获取便捷等优势,逐渐成为机械设备健康状态监测的重要手段。然而,由于编码器信号中的故障特征微弱,且易与多种干扰成分交叠,导致故障冲击特征难以准确辨识与提取。针对上述挑战,提出了一种基于加权双域稀疏分解模型的编码器信号特征提取及故障诊断方法。在加权双域稀疏分解模型中,分析了故障冲击特征与干扰成分在时域和频域中的形态特性差异,随后通过引入权重系数、非凸惩罚函数及周期二进制向量,构建了分别约束时域中故障冲击特征的周期性组稀疏特性与频域中谐波干扰成分的频域稀疏特性的非凸正则项,实现了信号中目标特征的精准匹配与刻画。此外,采用交替方向乘子法及受控极小化方法,推导了加权双域稀疏分解模型的迭代求解算法。最后,通过仿真数据与行星齿轮箱实验台数据验证了加权双域稀疏分解模型的有效性。结果表明,相较于两种对比方法——调Q因子小波变换分解方法和最大相关峭度解卷积方法,该方法在故障冲击特征提取精度方面具有显著优势,展现出良好的工程应用潜力。

    Abstract:

    As a key transmission component in mechanical systems, gearboxes often work under harsh environmental and heavy-load conditions, making them prone to damage. In recent years, built-in encoder signals have emerged as an effective method for health monitoring of mechanical equipment due to their low cost and ease of acquisition. However, the fault-related features within encoder signals are typically weak and often masked by various interference components, which poses a significant challenge for accurate identification and extraction of fault-induced impulses. To address this issue, this article proposes a fault feature extraction and diagnosis method for encoder signals based on a weighted bi-domain sparse decomposition model. In the proposed model, the morphological differences between fault impulses and interference components are analyzed in both the time and frequency domains. By introducing weighted coefficients, periodic binary vectors, and non-convex penalty functions, the model constructs two dedicated non-convex regularization terms that enforce periodic group sparsity in the time domain for fault impulses and spectral sparsity in the frequency domain for harmonic interferences, thereby achieving accurate separation and representation of target features. Furthermore, an iterative solving algorithm for the weighted bi-domain sparse decomposition model is developed by integrating the alternating direction method of multipliers and the majorization-minimization strategy to enhance computational efficiency and convergence stability. Finally, the effectiveness of the proposed weighted bi-domain sparse decomposition model is validated using both simulated data and experimental data from a planetary gearbox test bench. The results indicate that, compared with two existing methods, namely the tunable Q wavelet transform-based decomposition method and the maximum correlated kurtosis deconvolution method, the proposed method shows a significant advantage in fault impulse feature extraction accuracy, demonstrating strong potential for practical engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

张建峰,丁传仓,江星星,杜贵府,李舜酩.基于加权双域稀疏分解模型的编码器信号特征提取及其行星齿轮箱故障诊断应用[J].仪器仪表学报,2025,46(7):260-270

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码